論文の概要: Scaling Law in LLM Simulated Personality: More Detailed and Realistic Persona Profile Is All You Need
- arxiv url: http://arxiv.org/abs/2510.11734v1
- Date: Fri, 10 Oct 2025 05:52:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-15 19:02:32.014297
- Title: Scaling Law in LLM Simulated Personality: More Detailed and Realistic Persona Profile Is All You Need
- Title(参考訳): パーソナリティをシミュレートするLLMのスケーリング法則:より詳細でリアルなパーソナリティ
- Authors: Yuqi Bai, Tianyu Huang, Kun Sun, Yuting Chen,
- Abstract要約: 本研究では,大規模言語モデル(LLM)を用いて社会実験をシミュレートし,仮想ペルソナロールプレイングにおける人間の個性をエミュレートする能力を探求する。
本研究は、安定性と識別可能性の個人レベルの分析を含むエンドツーエンド評価フレームワークを開発する。
- 参考スコア(独自算出の注目度): 17.298070053011802
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This research focuses on using large language models (LLMs) to simulate social experiments, exploring their ability to emulate human personality in virtual persona role-playing. The research develops an end-to-end evaluation framework, including individual-level analysis of stability and identifiability, as well as population-level analysis called progressive personality curves to examine the veracity and consistency of LLMs in simulating human personality. Methodologically, this research proposes important modifications to traditional psychometric approaches (CFA and construct validity) which are unable to capture improvement trends in LLMs at their current low-level simulation, potentially leading to remature rejection or methodological misalignment. The main contributions of this research are: proposing a systematic framework for LLM virtual personality evaluation; empirically demonstrating the critical role of persona detail in personality simulation quality; and identifying marginal utility effects of persona profiles, especially a Scaling Law in LLM personality simulation, offering operational evaluation metrics and a theoretical foundation for applying large language models in social science experiments.
- Abstract(参考訳): 本研究では,大規模言語モデル(LLM)を用いて社会実験をシミュレートし,仮想ペルソナロールプレイングにおける人間の個性をエミュレートする能力を探求する。
本研究は、個人レベルでの安定性と識別可能性の分析を含むエンドツーエンド評価フレームワークを開発するとともに、進歩的パーソナリティ曲線と呼ばれる人口レベルの分析を行い、人間のパーソナリティをシミュレートするLLMの妥当性と一貫性を検討する。
本研究は, 従来の心理測定手法 (CFA, 構成妥当性) に重要な変更を加え, 従来の低レベルシミュレーションにおいてLCMの改善傾向を捉えることができず, 再帰的拒絶や方法論的不適応につながる可能性が示唆された。
本研究の主な貢献は, LLM仮想人格評価のための体系的枠組みの提案, 人格シミュレーションの質においてペルソナ細部の重要性を実証的に示すこと, 人格プロファイルの限界効用, 特にLLM人格シミュレーションにおけるスケーリング法, 運用評価指標の提供, 社会科学実験における大規模言語モデルの適用に関する理論的基礎, などである。
関連論文リスト
- Population-Aligned Persona Generation for LLM-based Social Simulation [58.84363795421489]
本稿では,社会シミュレーションのための高品質な集団対応ペルソナ集合を合成するための体系的枠組みを提案する。
我々のアプローチは、長期のソーシャルメディアデータから物語的ペルソナを生成するために、大きな言語モデルを活用することから始まる。
特定のシミュレーションコンテキストのニーズに対処するために,対象のサブポピュレーションに対してグローバルに整合したペルソナを適応させるタスク固有モジュールを提案する。
論文 参考訳(メタデータ) (2025-09-12T10:43:47Z) - Humanizing LLMs: A Survey of Psychological Measurements with Tools, Datasets, and Human-Agent Applications [25.38031971196831]
大規模言語モデル(LLM)は、人間中心のタスクでますます使われるようになっている。
彼らの心理的特徴を評価することは、彼らの社会的影響を理解し、信頼できるAIアライメントを確保するために不可欠である。
本研究は,LLMのより解釈しやすく,堅牢で,一般化可能な心理的アセスメントフレームワークを開発するための今後の方向性を提案することを目的とする。
論文 参考訳(メタデータ) (2025-04-30T06:09:40Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
データ構築とモデルチューニングを改善するためのフレームワークPersLLMを提案する。
データ利用が不十分な場合には、Chain-of-Thoughtプロンプトやアンチインダクションといった戦略を取り入れます。
厳密な振舞いパターンを設計し,モデルの性格の特異性とダイナミズムを高めるために自動DPOを導入する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - Systematic Biases in LLM Simulations of Debates [12.933509143906141]
人間の相互作用をシミュレートする際の大規模言語モデルの限界について検討する。
以上の結果から, LLMエージェントがモデル固有の社会的バイアスに適合する傾向が示唆された。
これらの結果は、エージェントがこれらのバイアスを克服するのに役立つ方法を開発するためのさらなる研究の必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-02-06T14:51:55Z) - Personality Traits in Large Language Models [42.31355340867784]
コミュニケーションの有効性を決定する重要な要因は人格である。
本稿では,広く使用されている大規模言語モデル上でのパーソナリティテストの管理と検証のための,新しい,包括的・包括的心理学的・信頼性の高い方法論を提案する。
本稿では,計測・形成手法の適用と倫理的意味,特に責任あるAIについて論じる。
論文 参考訳(メタデータ) (2023-07-01T00:58:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。