論文の概要: Optimal Regularization for Performative Learning
- arxiv url: http://arxiv.org/abs/2510.12249v1
- Date: Tue, 14 Oct 2025 08:00:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-15 21:19:14.978286
- Title: Optimal Regularization for Performative Learning
- Title(参考訳): 適応学習のための最適正規化
- Authors: Edwige Cyffers, Alireza Mirrokni, Marco Mondelli,
- Abstract要約: 高次元隆起回帰における影響を研究することにより、正規化がパフォーマンス効果にどう対処できるかを示す。
最適正則化は性能効果の総合的な強さでスケールし、この効果を期待して正則化を設定することができることを示す。
- 参考スコア(独自算出の注目度): 29.2228276896028
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In performative learning, the data distribution reacts to the deployed model - for example, because strategic users adapt their features to game it - which creates a more complex dynamic than in classical supervised learning. One should thus not only optimize the model for the current data but also take into account that the model might steer the distribution in a new direction, without knowing the exact nature of the potential shift. We explore how regularization can help cope with performative effects by studying its impact in high-dimensional ridge regression. We show that, while performative effects worsen the test risk in the population setting, they can be beneficial in the over-parameterized regime where the number of features exceeds the number of samples. We show that the optimal regularization scales with the overall strength of the performative effect, making it possible to set the regularization in anticipation of this effect. We illustrate this finding through empirical evaluations of the optimal regularization parameter on both synthetic and real-world datasets.
- Abstract(参考訳): パフォーマンス学習では、データ分散はデプロイされたモデル – 例えば、戦略的ユーザによるゲームへの適応 – に反応し、古典的な教師付き学習よりも複雑なダイナミクスを生み出す。
したがって、現在のデータのためにモデルを最適化するだけでなく、潜在的なシフトの正確な性質を知らずに、モデルが新しい方向に分布を操るかもしれないことを考慮しなくてはならない。
高次元隆起回帰における影響を研究することにより、正規化がパフォーマンス効果にどう対処できるかを考察する。
本研究は, 集団環境において, 性能効果がテストリスクを悪化させる一方で, 特徴数がサンプル数を超える過度なパラメータ化体制において有益であることを示す。
最適正則化は性能効果の総合的な強さでスケールし、この効果を期待して正則化を設定することができることを示す。
本研究は,合成データセットと実世界のデータセットの最適正則化パラメータの実証的評価を通じて,この発見について述べる。
関連論文リスト
- Sequential Data Augmentation for Generative Recommendation [54.765568804267645]
生成的レコメンデーションはパーソナライズされたシステムにおいて重要な役割を担い、ユーザの将来のインタラクションを過去の行動シーケンスから予測する。
データ拡張(Data augmentation)は、ユーザインタラクション履歴からトレーニングデータを構築するプロセスである。
我々は、サンプリングプロセスとして拡張をモデル化し、その結果のトレーニング分布の柔軟な制御を可能にする、原則化されたフレームワークであるGenPASを提案する。
ベンチマークと産業データセットを用いた実験により、GenPASは既存の戦略よりも精度、データ効率、パラメータ効率が優れていることが示された。
論文 参考訳(メタデータ) (2025-09-17T02:53:25Z) - Feasible Learning [78.6167929413604]
本稿では,サンプル中心の学習パラダイムであるFeasible Learning(FL)を紹介する。
大規模言語モデルにおける画像分類, 年齢回帰, 好みの最適化といった経験的分析により, FLを用いて訓練したモデルでは, 平均的性能に限界があるものの, ERMと比較して改善された尾の挙動を示しながらデータから学習できることが実証された。
論文 参考訳(メタデータ) (2025-01-24T20:39:38Z) - Optimal Classification under Performative Distribution Shift [13.508249764979075]
本稿では,動作効果をプッシュフォワード尺度としてモデル化した新しい視点を提案する。
我々は、新しい仮定のセットの下で、パフォーマンスリスクの凸性を証明する。
また, 性能リスクの最小化を min-max 変動問題として再定義することにより, 逆向きの頑健な分類との関係を確立する。
論文 参考訳(メタデータ) (2024-11-04T12:20:13Z) - Restoring balance: principled under/oversampling of data for optimal classification [0.0]
実世界のデータのクラス不均衡は、機械学習タスクに共通のボトルネックをもたらす。
データのアンダーやオーバーサンプリングといった緩和戦略は、定期的に提案され、実証的にテストされる。
我々は、クラス不均衡、データの第1、第2モーメント、考慮されたパフォーマンスの指標に依存するアンダー/オーバーサンプリング戦略の効果を鋭く予測する。
論文 参考訳(メタデータ) (2024-05-15T17:45:34Z) - Boosting Model Resilience via Implicit Adversarial Data Augmentation [20.768174896574916]
本稿では, 対向性および対向性摂動分布を組み込むことにより, 試料の深い特性を増大させることを提案する。
そして、この拡張過程が代理損失関数の最適化に近似することを理論的に明らかにする。
我々は4つの共通のバイアス付き学習シナリオにまたがって広範な実験を行う。
論文 参考訳(メタデータ) (2024-04-25T03:22:48Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Improved Fine-tuning by Leveraging Pre-training Data: Theory and
Practice [52.11183787786718]
対象データに事前学習されたモデルを微調整することは、多くのディープラーニングアプリケーションで広く利用されている。
近年の研究では、スクラッチからのトレーニングが、この事前トレーニング戦略に比較して、最終的なパフォーマンスを示すことが実証されている。
本稿では,対象タスクの一般化を改善するために,事前学習データからサブセットを選択する新しい選択戦略を提案する。
論文 参考訳(メタデータ) (2021-11-24T06:18:32Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
オフラインで収集されたデータセット(観測データ)を組み込んで、オンライン環境でのサンプル効率を改善する方法について検討する。
提案手法は,観測データを効率よく組み込んだ,分解された楽観的値反復 (DOVI) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-22T14:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。