論文の概要: Formal Models and Convergence Analysis for Context-Aware Security Verification
- arxiv url: http://arxiv.org/abs/2510.12440v1
- Date: Tue, 14 Oct 2025 12:21:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-15 19:02:32.309383
- Title: Formal Models and Convergence Analysis for Context-Aware Security Verification
- Title(参考訳): 文脈認識型セキュリティ検証のための形式モデルと収束解析
- Authors: Ayush Chaudhary,
- Abstract要約: 本稿では,ML強化適応システムに対する証明可能な保証を確立する,文脈認識型セキュリティ検証のための公式なフレームワークを提案する。
1)適応的検証が成功した場合のサンプル複雑性境界,(2)コンテキストリッチネスと検出能力に関する情報理論制限,(3)MLベースのペイロードジェネレータの収束保証。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a formal framework for context-aware security verification that establishes provable guarantees for ML-enhanced adaptive systems. We introduce context-completeness - a new security property - and prove: (1) sample complexity bounds showing when adaptive verification succeeds, (2) information-theoretic limits relating context richness to detection capability, (3) convergence guarantees for ML-based payload generators, and (4) compositional soundness bounds. We further provide a formal separation between static context-blind verifiers and context-aware adaptive verifiers: for a natural family of targets, any static verifier with finite payload budget achieves completeness at most alpha, while a context-aware verifier with sufficient information achieves completeness greater than alpha. We validate our theoretical predictions through controlled experiments on 97,224 exploit samples, demonstrating: detection accuracy improving from 58% to 69.93% with dataset growth, success probability increasing from 51% to 82% with context enrichment, training loss converging at O(1/sqrt(T)) rate, and false positive rate (10.19%) within theoretical bounds (12%). Our results show that theoretically-grounded adaptive verification achieves provable improvements over static approaches under stated assumptions while maintaining soundness guarantees.
- Abstract(参考訳): 本稿では,ML強化適応システムに対する証明可能な保証を確立する,文脈認識型セキュリティ検証のための公式なフレームワークを提案する。
1)適応的検証が成功した場合のサンプル複雑性境界,(2)コンテキストリッチネスと検出能力に関する情報理論的限界,(3)MLベースのペイロードジェネレータの収束保証,(4)構成音性境界。
さらに、静的な文脈盲検定と文脈認識適応検定を形式的に分離する: 対象の自然なファミリーに対して、有限ペイロード予算を持つ任意の静的検定は、ほとんどのアルファにおいて完全性を達成する一方、十分な情報を持つ文脈認識検定は、アルファよりも完全性を達成する。
我々は97,224個のエクスプロイトサンプルの制御実験により, 検出精度が58%から69.93%に向上し, コンテキストの豊か化により51%から82%に向上し, O(1/sqrt(T))レートで収束するトレーニング損失, 理論的境界内における偽陽性率(10.19%)を実証した。
提案手法は, 音質保証を維持しつつ, 仮定条件下での静的なアプローチよりも高い性能向上を達成できることを示す。
関連論文リスト
- VulAgent: Hypothesis-Validation based Multi-Agent Vulnerability Detection [55.957275374847484]
VulAgentは仮説検証に基づくマルチエージェント脆弱性検出フレームワークである。
セマンティクスに敏感なマルチビュー検出パイプラインを実装しており、それぞれが特定の分析の観点から一致している。
平均して、VulAgentは全体的な精度を6.6%改善し、脆弱性のある固定されたコードペアの正確な識別率を最大450%向上させ、偽陽性率を約36%削減する。
論文 参考訳(メタデータ) (2025-09-15T02:25:38Z) - Data-Driven Calibration of Prediction Sets in Large Vision-Language Models Based on Inductive Conformal Prediction [0.0]
動的しきい値キャリブレーションとクロスモーダル整合性検証を統合したモデル非依存不確実性定量化法を提案する。
このフレームワークは、様々なキャリブレーションとテストの分割比で安定したパフォーマンスを実現し、医療、自律システム、その他の安全に敏感な領域における現実的な展開の堅牢性を強調している。
この研究は、マルチモーダルAIシステムにおける理論的信頼性と実用性の間のギャップを埋め、幻覚検出と不確実性を考慮した意思決定のためのスケーラブルなソリューションを提供する。
論文 参考訳(メタデータ) (2025-04-24T15:39:46Z) - TrustLoRA: Low-Rank Adaptation for Failure Detection under Out-of-distribution Data [62.22804234013273]
本稿では,共変量および意味的シフトの両条件下での拒絶による分類を統一し,促進する,単純な故障検出フレームワークを提案する。
キーとなる洞察は、障害固有の信頼性知識を低ランクアダプタで分離し、統合することにより、障害検出能力を効果的かつ柔軟に向上できるということです。
論文 参考訳(メタデータ) (2025-04-20T09:20:55Z) - Beyond Confidence: Adaptive Abstention in Dual-Threshold Conformal Prediction for Autonomous System Perception [0.4124847249415279]
安全クリティカルな認識システムは、安全を維持するために確実な不確実性定量化と原則化された禁制機構を必要とする。
本稿では,統計的に保証された不確実性推定を提供するとともに,リスクの高いシナリオにおいて選択的な予測を可能にする,新しいデュアルスレッド整合化フレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-11T04:45:31Z) - Learning Conformal Abstention Policies for Adaptive Risk Management in Large Language and Vision-Language Models [3.958317527488534]
大きな言語と視覚言語モデル(LLMs/VLMs)は、安全クリティカルなアプリケーションでますます使われている。
不確かさの定量化は、予測の信頼性を評価するのに役立ち、不確実性が高い場合の回避を可能にする。
本稿では,学習可能な禁忌法を提案し,強化学習(RL)と整形予測(CP)を統合して禁忌閾値を最適化する。
論文 参考訳(メタデータ) (2025-02-08T21:30:41Z) - Noise-Adaptive Conformal Classification with Marginal Coverage [53.74125453366155]
本稿では,ランダムラベルノイズによる交換性からの偏差を効率的に処理できる適応型共形推論手法を提案する。
本手法は,合成および実データに対して,その有効性を示す広範囲な数値実験により検証する。
論文 参考訳(メタデータ) (2025-01-29T23:55:23Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Synchronous Faithfulness Monitoring for Trustworthy Retrieval-Augmented Generation [96.78845113346809]
Retrieval-augmented Language Model (RALMs) は、知識集約型タスクにおいて、高い性能と幅広い適用性を示している。
本稿では,非偽文の検出に微細な復号力学を利用する軽量モニタであるSynCheckを提案する。
また、長文検索拡張生成のためのビームサーチによって導かれる忠実度指向の復号アルゴリズムであるFODを導入する。
論文 参考訳(メタデータ) (2024-06-19T16:42:57Z) - Enhancing Security in Federated Learning through Adaptive
Consensus-Based Model Update Validation [2.28438857884398]
本稿では,ラベルフリップ攻撃に対して,FL(Federated Learning)システムを構築するための高度なアプローチを提案する。
本稿では,適応的しきい値設定機構と統合されたコンセンサスに基づく検証プロセスを提案する。
以上の結果から,FLシステムのレジリエンスを高め,ラベルフリップ攻撃の顕著な緩和効果が示唆された。
論文 参考訳(メタデータ) (2024-03-05T20:54:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。