論文の概要: COSTAR-A: A prompting framework for enhancing Large Language Model performance on Point-of-View questions
- arxiv url: http://arxiv.org/abs/2510.12637v1
- Date: Tue, 14 Oct 2025 15:31:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-15 19:02:32.374861
- Title: COSTAR-A: A prompting framework for enhancing Large Language Model performance on Point-of-View questions
- Title(参考訳): COSTAR-A: ポイント・オブ・ビューにおける大規模言語モデルの性能向上のためのプロンプトフレームワーク
- Authors: Nzubechukwu C. Ohalete, Kevin B. Gittner, Lauren M. Matheny,
- Abstract要約: 既存のCOSTAR手法を強化する新しいプロンプトエンジニアリングフレームワークであるCOSTAR-Aを紹介する。
従来のCOSTARフレームワークは,高速な明快さを向上し,より大きなLCMに対して出力を整列させるが,より小型で局所的に最適化されたモデルとの整合性は低いことが実証された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are highly sensitive to prompt design, and making optimized prompting techniques is crucial for generating consistent, high-quality outputs. In this study, we introduce COSTAR-A, a novel prompt engineering framework that enhances the existing COSTAR method, which stands for Context, Objective, Style, Tone, Audience, and Response, by adding the 'Answer' component at the end. We demonstrate that while the original COSTAR framework improves prompt clarity and aligns outputs for larger LLMs, its performance is less consistent with smaller, locally optimized models, particularly in tasks that require more directive or constrained outputs. Through a series of controlled prompt-output assessments with smaller (at most 8 billion parameters), fine-tuned models, we found that COSTAR-A can enhance the output structure and decisiveness of localized LLMs for certain tasks, although its effectiveness varies across models and use cases. Notably, the Llama 3.1-8B model exhibited performance improvements when prompted with COSTAR-A compared to COSTAR alone. These findings emphasize the adaptability and scalability of COSTAR-A as a prompting framework, particularly in computationally efficient AI deployments on resource-constrained hardware.
- Abstract(参考訳): 大規模言語モデル(LLM)は、設計の迅速化に非常に敏感であり、一貫した高品質な出力を生成するためには、最適化されたプロンプト技術が不可欠である。
本研究では,COSTAR-Aを提案する。COSTAR-Aは,コンテキスト,客観性,スタイル,トーン,オーディエンス,応答を表す既存のCOSTARメソッドを最後に'Answer'コンポーネントを追加することで拡張する新しいプロンプトエンジニアリングフレームワークである。
従来のCOSTARフレームワークは、迅速な明快さを改善し、より大きなLCMに対して出力を整列させるが、特によりディレクティブや制約のある出力を必要とするタスクにおいて、その性能はより小さく、局所的に最適化されたモデルとの整合性が低いことを実証した。
その結果,COSTAR-Aは特定のタスクに対する局所的なLCMの出力構造と決定性を向上させることができるが,有効性はモデルやユースケースによって異なることがわかった。
特に、Llama 3.1-8BはCOSTAR単独と比較してCOSTAR-Aの推進により性能が向上した。
これらの知見はCOSTAR-Aの適応性と拡張性を、特に資源制約のあるハードウェア上での計算効率の良いAIデプロイメントにおいて促進するフレームワークとして強調している。
関連論文リスト
- ImCoref-CeS: An Improved Lightweight Pipeline for Coreference Resolution with LLM-based Checker-Splitter Refinement [45.01372641622595]
InmCoref-CeSは,拡張教師付きモデルとLarge Language Models(LLM)ベースの推論を統合する新しいフレームワークである。
まず、教師付きニューラルネットワークの性能境界を押し上げる改良CR法(textbfImCoref)を提案する。
マルチロールチェッカースプリッターエージェントとして機能するLCMを用いて、候補参照とコア参照結果の検証を行う。
論文 参考訳(メタデータ) (2025-10-11T14:48:08Z) - Well Begun is Half Done: Low-resource Preference Alignment by Weak-to-Strong Decoding [26.416630784362525]
大規模言語モデル(LLM)は、攻撃的、偽り、あるいは無意味なコンテンツを生成するのを避けるために、人間の好みと整合する必要がある。
本稿では,ベースモデルのアライメント能力を高めるための新しいフレームワークであるWak-to-Strong Decoding (WSD)を提案する。
我々はまた、ドラフトモデルとして小さなPilot-3Bを微調整するための新しいデータセットGenAlignerも収集しています。
論文 参考訳(メタデータ) (2025-06-09T05:21:22Z) - ORPP: Self-Optimizing Role-playing Prompts to Enhance Language Model Capabilities [64.24517317344959]
複雑なタスクにおいて、大きな言語モデルから優れたパフォーマンスを引き出すためには、高品質なプロンプトが不可欠である。
本稿では,ロールプレイングプロンプトの最適化と生成によりモデル性能を向上させるフレームワークORPPを提案する。
ORPPは一致しただけでなく、ほとんどの場合、性能の点で既存の主流のプロンプト最適化手法を上回ります。
論文 参考訳(メタデータ) (2025-06-03T05:51:35Z) - Leveraging Importance Sampling to Detach Alignment Modules from Large Language Models [50.19188692497892]
伝統的なアライメント手法では、しばしば大きな事前訓練されたモデルを再訓練する必要がある。
本稿では,アライメント処理を重要サンプリングの一種として形式化する新しいtextitResidual Alignment Model (textitRAM) を提案する。
本稿では,トークンレベルの復号化を反復的に行う再サンプリングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2025-05-26T08:53:02Z) - Detect, Explain, Escalate: Low-Carbon Dialogue Breakdown Management for LLM-Powered Agents [30.13634341221476]
大規模言語モデル(LLM)は、多くのアプリケーションを変えつつありますが、会話のブレークダウンへの感受性は、ユーザ信頼を損なう重要な課題です。
本稿では,低炭素運転を重視したLDMエージェントの対話分解を管理するためのフレームワーク「Detect, Explain, Escalate」を提案する。
論文 参考訳(メタデータ) (2025-04-26T07:51:05Z) - GAPO: Learning Preferential Prompt through Generative Adversarial Policy Optimization [28.85371253733727]
本稿では,GAPO(Generative Adversarial Policy Optimization)を紹介する。GAPOは,GANベースのトレーニングダイナミクスとエンコーダのみの報酬モデルを組み合わせた新しいフレームワークである。
大規模な実験では、GAPOは複数のベンチマークで優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2025-03-26T03:37:52Z) - STAR: Synthesis of Tailored Architectures [61.080157488857516]
本稿では, 適合型アーキテクチャ (STAR) の新規な合成手法を提案する。
提案手法は線形入力可変系の理論に基づく新しい探索空間を結合し,階層的な数値エンコーディングをアーキテクチャゲノムに支持する。STARゲノムは,複数のモデル品質と効率の指標に最適化するために,勾配のない進化的アルゴリズムで自動的に精製・組換えされる。
STARを用いて、多種多様な計算単位と相互接続パターンを活用し、品質、パラメータサイズ、および自動回帰言語モデリングのための推論キャッシュのフロンティアにおける高度に最適化されたトランスフォーマーとストライプハイブリッドモデルを改善する。
論文 参考訳(メタデータ) (2024-11-26T18:42:42Z) - Large Language Models to Enhance Bayesian Optimization [57.474613739645605]
本稿では,大規模言語モデル(LLM)の能力をベイズ最適化に組み込む新しいアプローチであるLLAMBOを提案する。
高いレベルでは、自然言語のBO問題を枠組み化し、LLMが歴史的評価に照らした有望な解を反復的に提案し、評価することを可能にする。
以上の結果から,LLAMBOはゼロショットウォームスタートに有効であり,サロゲートモデリングや候補サンプリングの促進,特に観察が不十分な場合の探索の初期段階において有効であることが示唆された。
論文 参考訳(メタデータ) (2024-02-06T11:44:06Z) - DRL Enabled Coverage and Capacity Optimization in STAR-RIS Assisted
Networks [55.0821435415241]
無線通信における新たなパラダイムとして,STAR-RISのカバレッジとキャパシティ性能の分析が不可欠だが難しい。
STAR-RIS支援ネットワークにおけるカバレッジとキャパシティ最適化の問題を解決するために,多目的ポリシー最適化(MO-PPO)アルゴリズムを提案する。
MO-PPOアルゴリズムの性能向上のために、アクション値ベースの更新戦略(AVUS)と損失関数ベースの更新戦略(LFUS)の2つの更新戦略を検討した。
論文 参考訳(メタデータ) (2022-09-01T14:54:36Z) - Sharpness-Aware Minimization Improves Language Model Generalization [46.83888240127077]
シャープネス認識最小化(SAM)は,計算オーバーヘッドを伴わずに言語モデルの一般化を大幅に改善できることを示す。
SAMは,SuperGLUE,GLUE,Web Questions,Natural Questions,Trivia QA,TyDiQAの性能向上を図っている。
論文 参考訳(メタデータ) (2021-10-16T09:44:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。