論文の概要: Assessing the robustness of heterogeneous treatment effects in survival analysis under informative censoring
- arxiv url: http://arxiv.org/abs/2510.13397v1
- Date: Wed, 15 Oct 2025 10:51:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-16 20:13:28.6278
- Title: Assessing the robustness of heterogeneous treatment effects in survival analysis under informative censoring
- Title(参考訳): 情報検閲下の生存分析における不均一処理効果のロバスト性の評価
- Authors: Yuxin Wang, Dennis Frauen, Jonas Schweisthal, Maresa Schröder, Stefan Feuerriegel,
- Abstract要約: 臨床研究ではドロップアウトが一般的で、副作用やその他の理由で患者の半数以上が早期に退院する。
ドロップアウトが有益な場合、治療効果の推定値にもバイアスがかかるため、検閲バイアスが導入される。
検閲バイアスに直面した場合の生存分析における条件平均処理効果推定のロバスト性を評価するための仮定リーンフレームワークを提案する。
- 参考スコア(独自算出の注目度): 50.164756034797136
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dropout is common in clinical studies, with up to half of patients leaving early due to side effects or other reasons. When dropout is informative (i.e., dependent on survival time), it introduces censoring bias, because of which treatment effect estimates are also biased. In this paper, we propose an assumption-lean framework to assess the robustness of conditional average treatment effect (CATE) estimates in survival analysis when facing censoring bias. Unlike existing works that rely on strong assumptions, such as non-informative censoring, to obtain point estimation, we use partial identification to derive informative bounds on the CATE. Thereby, our framework helps to identify patient subgroups where treatment is effective despite informative censoring. We further develop a novel meta-learner that estimates the bounds using arbitrary machine learning models and with favorable theoretical properties, including double robustness and quasi-oracle efficiency. We demonstrate the practical value of our meta-learner through numerical experiments and in an application to a cancer drug trial. Together, our framework offers a practical tool for assessing the robustness of estimated treatment effects in the presence of censoring and thus promotes the reliable use of survival data for evidence generation in medicine and epidemiology.
- Abstract(参考訳): 臨床研究ではドロップアウトが一般的で、副作用やその他の理由で患者の半数以上が早期に退院する。
ドロップアウトが情報的(すなわち生存時間に依存する)である場合、治療効果の推定値にもバイアスがかかるため、検閲バイアスが導入される。
本稿では,検閲バイアスに直面した場合の生存分析における条件平均処理効果(CATE)推定のロバスト性を評価するための仮定リーンフレームワークを提案する。
非形式的検閲のような強い仮定に頼って点推定を行う既存の作品とは異なり、我々は部分的識別を用いてCATE上の情報的境界を導出する。
これにより,情報検閲にも拘わらず治療が効果的である患者サブグループを同定できる。
さらに、任意の機械学習モデルを用いて境界を推定し、二重ロバスト性や準オラクル効率を含む理論的性質が好ましいメタラーナーを開発した。
数値実験によるメタラーナーの実用的価値とがん薬物臨床試験への応用について述べる。
本フレームワークは,検閲の有無による治療効果のロバスト性を評価するための実用的なツールであり,医療・疫学におけるエビデンス生成のためのサバイバルデータの利用を促進する。
関連論文リスト
- Beyond the ATE: Interpretable Modelling of Treatment Effects over Dose and Time [46.2482873419289]
本研究では, 治療効果トラジェクトリを線量および時間とともに滑らかな表面としてモデル化する枠組みを提案する。
本研究は, 臨床的に有意な特性の特定から, 軌道形状の推定を分離する。
本手法は, 処理力学の精度, 解釈可能, 編集可能なモデルを生成する。
論文 参考訳(メタデータ) (2025-07-09T20:33:33Z) - Statistical Learning for Heterogeneous Treatment Effects: Pretraining, Prognosis, and Prediction [40.96453902709292]
実世界の応用における現象を利用した事前学習戦略を提案する。
医学では、同じ生物学的シグナル伝達経路の成分は、ベースラインリスクと治療反応の両方に頻繁に影響を及ぼす。
この構造を用いて,リスク予測と因果効果推定の相乗効果を利用するモデルを構築した。
論文 参考訳(メタデータ) (2025-05-01T05:12:14Z) - Contrastive Learning of Temporal Distinctiveness for Survival Analysis
in Electronic Health Records [10.192973297290136]
本稿では,オントロジーを意識したテンポラリティに基づくコントラシブ・サバイバル(OTCSurv)分析フレームワークを提案する。
OTCSurvは、検閲されたデータと観察されたデータの両方から生存期間を使い、時間的特異性を定義する。
急性腎障害(AKI)を発症する危険のある入院患者のリスクを予測するために,大規模なEHRデータセットを用いて実験を行った。
論文 参考訳(メタデータ) (2023-08-24T22:36:22Z) - On Practical Aspects of Aggregation Defenses against Data Poisoning
Attacks [58.718697580177356]
悪意のあるトレーニングサンプルを持つディープラーニングモデルに対する攻撃は、データ中毒として知られている。
データ中毒に対する防衛戦略の最近の進歩は、認証された毒性の堅牢性を達成するためのアグリゲーション・スキームの有効性を強調している。
ここでは、Deep Partition Aggregation(ディープ・パーティション・アグリゲーション・アグリゲーション)、代表的アグリゲーション・ディフェンス(アグリゲーション・ディフェンス)に焦点を当て、効率、性能、堅牢性など、その実践的側面を評価する。
論文 参考訳(メタデータ) (2023-06-28T17:59:35Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
本稿では,B-Learnerと呼ばれるメタラーナーを提案する。
我々は、その推定が有効で、鋭く、効率的であることを証明し、既存の方法よりも一般的な条件下で構成推定器に対して準オーラル特性を持つことを示した。
論文 参考訳(メタデータ) (2023-04-20T18:07:19Z) - Partial Identification of Dose Responses with Hidden Confounders [25.468473751289036]
観測データから連続的に評価された治療の因果効果を推定することが重要な課題である。
本稿では, 平均および条件付き平均連続値処理効果推定値の両方を束縛する新しい手法を提案する。
本手法を実世界の観測ケーススタディに適用し,線量依存因果効果の同定の価値を実証する。
論文 参考訳(メタデータ) (2022-04-24T07:02:21Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。