論文の概要: ProtoTopic: Prototypical Network for Few-Shot Medical Topic Modeling
- arxiv url: http://arxiv.org/abs/2510.13542v1
- Date: Wed, 15 Oct 2025 13:38:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-16 20:13:28.682869
- Title: ProtoTopic: Prototypical Network for Few-Shot Medical Topic Modeling
- Title(参考訳): ProtoTopic: Few-Shot Medical Topic Modelingのためのプロトタイプネットワーク
- Authors: Martin Licht, Sara Ketabi, Farzad Khalvati,
- Abstract要約: そこで本稿では,医療論文の要約のためのトピック生成に使用されるプロトタイプ型ネットワークベースのトピックモデルを提案する。
文献で使用される2つのトピックモデリングベースラインと比較して,トピックコヒーレンスと多様性が改善された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Topic modeling is a useful tool for analyzing large corpora of written documents, particularly academic papers. Despite a wide variety of proposed topic modeling techniques, these techniques do not perform well when applied to medical texts. This can be due to the low number of documents available for some topics in the healthcare domain. In this paper, we propose ProtoTopic, a prototypical network-based topic model used for topic generation for a set of medical paper abstracts. Prototypical networks are efficient, explainable models that make predictions by computing distances between input datapoints and a set of prototype representations, making them particularly effective in low-data or few-shot learning scenarios. With ProtoTopic, we demonstrate improved topic coherence and diversity compared to two topic modeling baselines used in the literature, demonstrating the ability of our model to generate medically relevant topics even with limited data.
- Abstract(参考訳): トピックモデリングは、文書、特に学術論文の大きなコーパスを分析するのに有用なツールである。
様々なトピックモデリング手法が提案されているが、医療用テキストに適用しても、これらの手法はうまく機能しない。
これは、医療分野のいくつかのトピックで利用可能なドキュメントの数が少ないためである。
本稿では,一連の医療論文要約のためのトピック生成に使用されるプロトタイプネットワークベースのトピックモデルであるProtoTopicを提案する。
プロトタイプネットワークは、入力データポイントとプロトタイプ表現のセット間の距離を計算することによって予測を行う、効率的で説明可能なモデルである。
ProtoTopicでは,文献で使用されている2つのトピックモデリングベースラインと比較して,トピックコヒーレンスと多様性の向上を実証し,限られたデータでも医療関連トピックを生成できることを実証した。
関連論文リスト
- Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
本稿では,PubMedなどの公共リソースから,医用画像・テキスト・アライメントデータを自動的に収集する方法を示す。
特に,まず大きな脳画像テキストデータセットを収集することにより,事前学習プロセスの合理化を図るパイプラインを提案する。
また,医療領域におけるサブフィギュアをサブキャプションにマッピングするというユニークな課題についても検討した。
論文 参考訳(メタデータ) (2024-04-27T05:03:42Z) - GINopic: Topic Modeling with Graph Isomorphism Network [0.8962460460173959]
本稿では,グラフ同型ネットワークに基づく話題モデリングフレームワークGINopicを紹介し,単語間の相関関係を捉える。
本稿では,既存のトピックモデルと比較してGINopicの有効性を実証し,トピックモデリングの進歩の可能性を明らかにする。
論文 参考訳(メタデータ) (2024-04-02T17:18:48Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
オープンソースの小型マルチモーダルモデル(SMM)を訓練し、放射線学における未測定臨床ニーズに対する能力ギャップを埋める。
トレーニングのために,697万以上の画像テキストペアからなる大規模なデータセットを組み立てる。
評価のために,GPT-4に基づく実測値CheXpromptを提案する。
LlaVA-Radの推論は高速で、単一のV100 GPU上でプライベート設定で実行できる。
論文 参考訳(メタデータ) (2024-03-12T18:12:02Z) - Let the Pretrained Language Models "Imagine" for Short Texts Topic
Modeling [29.87929724277381]
短いテキストでは、共起情報は最小限であり、結果として文書表現の特徴が分散する。
既存のトピックモデル(確率的あるいは神経的)は、ほとんどの場合、一貫性のあるトピックを生成するためにパターンのマイニングに失敗します。
既存の事前学習言語モデル(PLM)を用いて、短いテキストを長いシーケンスに拡張する。
論文 参考訳(メタデータ) (2023-10-24T00:23:30Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Improving Neural Topic Models using Knowledge Distillation [84.66983329587073]
我々は,確率論的トピックモデルと事前学習されたトランスフォーマーの最適属性を組み合わせるために,知識蒸留を用いる。
我々のモジュラー手法は、どのニューラルトピックモデルでも簡単に適用でき、トピックの品質を向上させることができる。
論文 参考訳(メタデータ) (2020-10-05T22:49:16Z) - Neural Topic Modeling with Cycle-Consistent Adversarial Training [17.47328718035538]
本稿では, 周期整合適応訓練(ToMCAT)によるトピックモデリングとその教師付きバージョン sToMCAT を提案する。
ToMCATは、トピックを解釈するジェネレータネットワークと、ドキュメントトピックを推論するエンコーダネットワークを使用している。
SToMCATはトピックモデリングプロセスにドキュメントラベルを組み込むことでToMCATを拡張し、より一貫性のあるトピックの発見を支援する。
論文 参考訳(メタデータ) (2020-09-29T12:41:27Z) - Topic Adaptation and Prototype Encoding for Few-Shot Visual Storytelling [81.33107307509718]
トピック間一般化の能力をモデル化するためのトピック適応型ストーリーテラを提案する。
また,アトピー内導出能力のモデル化を目的とした符号化手法の試作も提案する。
実験結果から,トピック適応とプロトタイプ符号化構造が相互に利益をもたらすことが明らかとなった。
論文 参考訳(メタデータ) (2020-08-11T03:55:11Z) - Part-aware Prototype Network for Few-shot Semantic Segmentation [50.581647306020095]
本稿では,プロトタイプ表現に基づく新規な数ショットセマンティックセマンティックセマンティクスフレームワークを提案する。
私たちのキーとなるアイデアは、全体論的なクラス表現を、部分認識型プロトタイプのセットに分解することです。
提案する部分認識型プロトタイプを生成・拡張する新しいグラフニューラルネットワークモデルを開発した。
論文 参考訳(メタデータ) (2020-07-13T11:03:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。