論文の概要: Seeing Hate Differently: Hate Subspace Modeling for Culture-Aware Hate Speech Detection
- arxiv url: http://arxiv.org/abs/2510.13837v1
- Date: Sat, 11 Oct 2025 00:07:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-17 21:15:14.46135
- Title: Seeing Hate Differently: Hate Subspace Modeling for Culture-Aware Hate Speech Detection
- Title(参考訳): ヘイトを別々に見る:Hate Subspace Modeling for Culture-Aware Hate Speech Detection
- Authors: Weibin Cai, Reza Zafarani,
- Abstract要約: 我々は、データの空間性、文化的絡み合い、曖昧なラベリングを分析する。
個人の憎しみの部分空間を構成する文化認識フレームワークを提案する。
実験により,本手法は平均1.05%の最先端性能を示した。
- 参考スコア(独自算出の注目度): 3.685453775072903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hate speech detection has been extensively studied, yet existing methods often overlook a real-world complexity: training labels are biased, and interpretations of what is considered hate vary across individuals with different cultural backgrounds. We first analyze these challenges, including data sparsity, cultural entanglement, and ambiguous labeling. To address them, we propose a culture-aware framework that constructs individuals' hate subspaces. To alleviate data sparsity, we model combinations of cultural attributes. For cultural entanglement and ambiguous labels, we use label propagation to capture distinctive features of each combination. Finally, individual hate subspaces, which in turn can further enhance classification performance. Experiments show our method outperforms state-of-the-art by 1.05\% on average across all metrics.
- Abstract(参考訳): ヘイトスピーチの検出は広く研究されてきたが、既存の方法では実世界の複雑さを見落としていることが多い。
まず、データ空間、文化的絡み合い、あいまいなラベル付けなど、これらの課題を分析します。
そこで我々は,個人の憎しみの部分空間を構成する文化意識の枠組みを提案する。
データの疎さを軽減するため、我々は文化的属性の組み合わせをモデル化する。
文化的絡み合いやあいまいなラベルについては,ラベル伝搬を用いてそれぞれの組み合わせの特徴を捉えている。
最後に、個々のヘイト部分空間は分類性能をさらに高めることができる。
実験の結果,提案手法はすべての指標で平均1.05\%,最先端の手法よりも優れていた。
関連論文リスト
- CAIRe: Cultural Attribution of Images by Retrieval-Augmented Evaluation [61.130639734982395]
本稿では,画像の文化的関連度を評価する新しい評価指標であるCAIReを紹介する。
本フレームワークは,イメージ内の実体と概念を知識ベースに基盤として,実情報を用いて各文化ラベルに対して独立した評価を行う。
論文 参考訳(メタデータ) (2025-06-10T17:16:23Z) - Compositional Generalisation for Explainable Hate Speech Detection [52.41588643566991]
ヘイトスピーチ検出はオンラインコンテンツモデレーションの鍵であるが、現在のモデルはトレーニングデータ以上の一般化に苦慮している。
モデルがよりきめ細かなスパンレベルのアノテーションでトレーニングされている場合でも、それらのラベルの意味を周囲のコンテキストから切り離すことに苦労しています。
本研究では,すべての文脈で同じ頻度で表現が生じるデータセット上でのトレーニングにより,一般化が向上するかどうかを検討する。
論文 参考訳(メタデータ) (2025-06-04T13:07:36Z) - Exploring Cross-Cultural Differences in English Hate Speech Annotations: From Dataset Construction to Analysis [44.17106903728264]
ほとんどのヘイトスピーチデータセットは、単一の言語における文化的多様性を無視している。
そこで本研究では,CRoss文化の英語Hate音声データセットであるCREHateを紹介する。
CREHateのポストの56.2%のみが全国でコンセンサスを達成しており、ペアのラベル差が最も高いのは26%である。
論文 参考訳(メタデータ) (2023-08-31T13:14:47Z) - ToKen: Task Decomposition and Knowledge Infusion for Few-Shot Hate
Speech Detection [85.68684067031909]
この問題を数ショットの学習タスクとみなし、タスクを「構成」部分に分解することで大きな成果を上げている。
さらに、推論データセット(例えばAtomic 2020)から知識を注入することで、パフォーマンスはさらに向上する。
論文 参考訳(メタデータ) (2022-05-25T05:10:08Z) - Highly Generalizable Models for Multilingual Hate Speech Detection [0.0]
ヘイトスピーチ検出は過去10年で重要な研究課題となっている。
我々は11言語からなるデータセットをコンパイルし、組み合わせたデータとバイナリラベル(ヘイトスピーチかヘイトスピーチでないか)を解析することで、異なる解決を行う。
多言語-トレイン型モノリンガルテスト,モノリンガルトレイン型モノリンガルテスト,言語-家族型モノリンガルテストのシナリオである。
論文 参考訳(メタデータ) (2022-01-27T03:09:38Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - Deception detection in text and its relation to the cultural dimension
of individualism/collectivism [6.17866386107486]
本研究は,文化における特定の言語的特徴の活用の相違が,個性主義/選択主義の分断に関して,規範に起因しているかどうかを考察する。
我々は、音韻学、形態学、構文に基づく幅広いn-gram特徴を実験することにより、カルチャー/言語対応分類器を作成する。
我々は6カ国(米国、ベルギー、インド、ロシア、メキシコ、ルーマニア)の5言語(英語、オランダ、ロシア、スペイン、ルーマニア)から11のデータセットを用いて実験を行った。
論文 参考訳(メタデータ) (2021-05-26T13:09:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。