論文の概要: Metacognitive Self-Correction for Multi-Agent System via Prototype-Guided Next-Execution Reconstruction
- arxiv url: http://arxiv.org/abs/2510.14319v1
- Date: Thu, 16 Oct 2025 05:35:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-17 21:15:14.736836
- Title: Metacognitive Self-Correction for Multi-Agent System via Prototype-Guided Next-Execution Reconstruction
- Title(参考訳): プロトタイプ誘導次実行再構成によるマルチエージェントシステムのメタ認知自己補正
- Authors: Xu Shen, Qi Zhang, Song Wang, Zhen Tan, Xinyu Zhao, Laura Yao, Vaishnav Tadiparthi, Hossein Nourkhiz Mahjoub, Ehsan Moradi Pari, Kwonjoon Lee, Tianlong Chen,
- Abstract要約: 大規模言語モデルに基づくマルチエージェントシステムは、協調的な問題解決において優れているが、エラーのカスケードには脆弱である。
我々は,MASにリアルタイム,教師なし,ステップレベルの誤り検出と自己補正を付与するメタ認知フレームワークMASCを提案する。
- 参考スコア(独自算出の注目度): 58.51530390018909
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Model based multi-agent systems (MAS) excel at collaborative problem solving but remain brittle to cascading errors: a single faulty step can propagate across agents and disrupt the trajectory. In this paper, we present MASC, a metacognitive framework that endows MAS with real-time, unsupervised, step-level error detection and self-correction. MASC rethinks detection as history-conditioned anomaly scoring via two complementary designs: (1) Next-Execution Reconstruction, which predicts the embedding of the next step from the query and interaction history to capture causal consistency, and (2) Prototype-Guided Enhancement, which learns a prototype prior over normal-step embeddings and uses it to stabilize reconstruction and anomaly scoring under sparse context (e.g., early steps). When an anomaly step is flagged, MASC triggers a correction agent to revise the acting agent's output before information flows downstream. On the Who&When benchmark, MASC consistently outperforms all baselines, improving step-level error detection by up to 8.47% AUC-ROC ; When plugged into diverse MAS frameworks, it delivers consistent end-to-end gains across architectures, confirming that our metacognitive monitoring and targeted correction can mitigate error propagation with minimal overhead.
- Abstract(参考訳): 大規模言語モデルに基づくマルチエージェントシステム(MAS)は、協調的な問題解決において優れているが、カスケードエラーに対して脆弱なままである。
本稿では,MASにリアルタイム,教師なし,ステップレベルの誤り検出と自己補正を実現するメタ認知フレームワークMASCを提案する。
MASCは,(1)クエリとインタラクションの履歴から次のステップの埋め込みを予測して因果一貫性を捉えるNext-Execution Reconstruction,(2)通常のステップの埋め込みに先立ってプロトタイプを学習するPrototype-Guided Enhancement,の2つの相補的な設計を通じて,検出を履歴条件付き異常スコアとして再考し,それをスパースコンテキスト(例えば初期ステップ)下での再構成と異常スコアの安定化に利用する。
異常ステップがフラグ付けされると、MASCは修正エージェントをトリガーして、情報が下流に流れる前にエージェントの出力を更新する。
さまざまなMASフレームワークにプラグインされると、アーキテクチャ全体にわたって一貫したエンドツーエンドのゲインを提供し、メタ認知的な監視とターゲットの修正によって、オーバーヘッドを最小限に抑えられることを確認します。
関連論文リスト
- Merge and Guide: Unifying Model Merging and Guided Decoding for Controllable Multi-Objective Generation [49.98025799046136]
Merge-And-GuidEは、ガイド付きデコーディングにモデルマージを利用する2段階のフレームワークである。
ステージ1では、MAGEはガイダンスとベースモデルの互換性の問題を解決する。
ステージ2では、明示的で暗黙的な値モデルを統一的なガイダンスプロキシにマージします。
論文 参考訳(メタデータ) (2025-10-04T11:10:07Z) - Where LLM Agents Fail and How They can Learn From Failures [62.196870049524364]
大規模言語モデル(LLM)エージェントは、複雑なマルチステップタスクの解決において有望であることを示す。
単一ルート原因エラーがその後の決定を通じて伝播する、障害のカスケードに対する脆弱性を増幅する。
現在のシステムは、モジュール的で体系的な方法でエージェントエラーを包括的に理解できるフレームワークを欠いている。
AgentErrorTaxonomyは、メモリ、リフレクション、計画、アクション、システムレベルの操作にまたがる障害モードのモジュール分類である。
論文 参考訳(メタデータ) (2025-09-29T18:20:27Z) - Abduct, Act, Predict: Scaffolding Causal Inference for Automated Failure Attribution in Multi-Agent Systems [20.846301581161978]
マルチエージェントシステムにおける障害帰属は、批判的だが未解決の課題である。
現在の手法では、これを長い会話ログ上のパターン認識タスクとして扱う。
A2P Scaffoldingは、パターン認識から構造化因果推論タスクへの障害帰属を変換する。
論文 参考訳(メタデータ) (2025-09-12T16:51:15Z) - Automatic Failure Attribution and Critical Step Prediction Method for Multi-Agent Systems Based on Causal Inference [8.823529310904162]
マルチエージェントシステム(MAS)は複雑なタスクの自動化に不可欠であるが、その実践的展開は障害帰属の課題によって妨げられている。
マルチグラニュラリティ因果推論に基づくMASのための最初の失敗帰属フレームワークを提案する。
論文 参考訳(メタデータ) (2025-09-10T15:22:00Z) - SentinelAgent: Graph-based Anomaly Detection in Multi-Agent Systems [11.497269773189254]
大規模言語モデル(LLM)に基づくマルチエージェントシステム(MAS)に適したシステムレベルの異常検出フレームワークを提案する。
本稿では,エージェント間相互作用を動的実行グラフとしてモデル化し,ノード,エッジ,パスレベルでの意味的異常検出を可能にするグラフベースのフレームワークを提案する。
第2に,セキュリティポリシとコンテキスト推論に基づくMAS実行の監視,解析,介入を行うLLMによる監視エージェントである,プラグイン可能なSentinelAgentを導入する。
論文 参考訳(メタデータ) (2025-05-30T04:25:19Z) - Multimodal LLM-Guided Semantic Correction in Text-to-Image Diffusion [52.315729095824906]
MLLM Semantic-Corrected Ping-Pong-Ahead Diffusion (PPAD) は,マルチモーダル大言語モデル(MLLM)を推論中の意味的オブザーバとして導入する新しいフレームワークである。
中間世代をリアルタイムに分析し、潜在意味的不整合を識別し、フィードバックを制御可能な信号に変換し、残りの認知ステップを積極的に導く。
大規模な実験ではPPADの大幅な改善が示されている。
論文 参考訳(メタデータ) (2025-05-26T14:42:35Z) - Why Do Multi-Agent LLM Systems Fail? [91.39266556855513]
MAST(Multi-Agent System Failure taxonomy, MAST)は,MASの故障を理解するために考案された分類法である。
我々は、200以上のタスクにまたがる7つの人気のあるMASフレームワークを分析し、6つの専門家のアノテータを含む。
14のユニークな障害モードを特定し、(i)仕様問題、(ii)エージェント間ミスアライメント、(iii)タスク検証の3つに分類した。
論文 参考訳(メタデータ) (2025-03-17T19:04:38Z) - DECIDER: Leveraging Foundation Model Priors for Improved Model Failure Detection and Explanation [18.77296551727931]
本稿では,大規模言語モデル (LLM) と視覚言語モデル (VLM) の先行情報を利用した画像モデルの故障検出手法であるDECIDERを提案する。
DECIDERは一貫して最先端の故障検出性能を達成し、マシューズ相関係数全体のベースラインを著しく上回っている。
論文 参考訳(メタデータ) (2024-08-01T07:08:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。