論文の概要: DRBD-Mamba for Robust and Efficient Brain Tumor Segmentation with Analytical Insights
- arxiv url: http://arxiv.org/abs/2510.14383v2
- Date: Tue, 28 Oct 2025 14:50:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-29 15:35:36.20531
- Title: DRBD-Mamba for Robust and Efficient Brain Tumor Segmentation with Analytical Insights
- Title(参考訳): DRBD-Mambaによるロバスト・高能率脳腫瘍切除の検討
- Authors: Danish Ali, Ajmal Mian, Naveed Akhtar, Ghulam Mubashar Hassan,
- Abstract要約: 脳腫瘍の正確なセグメンテーションは、臨床診断と治療に重要である。
マンバを拠点とするState Space Modelsは、有望なパフォーマンスを示している。
本稿では,計算オーバーヘッドを最小限に抑えながら,マルチスケールの長距離依存関係をキャプチャするマルチ解像度双方向マンバを提案する。
- 参考スコア(独自算出の注目度): 54.87947751720332
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate brain tumor segmentation is significant for clinical diagnosis and treatment but remains challenging due to tumor heterogeneity. Mamba-based State Space Models have demonstrated promising performance. However, despite their computational efficiency over other neural architectures, they incur considerable overhead for this task due to their sequential feature computation across multiple spatial axes. Moreover, their robustness across diverse BraTS data partitions remains largely unexplored, leaving a critical gap in reliable evaluation. To address this, we first propose a dual-resolution bi-directional Mamba (DRBD-Mamba), an efficient 3D segmentation model that captures multi-scale long-range dependencies with minimal computational overhead. We leverage a space-filling curve to preserve spatial locality during 3D-to-1D feature mapping, thereby reducing reliance on computationally expensive multi-axial feature scans. To enrich feature representation, we propose a gated fusion module that adaptively integrates forward and reverse contexts, along with a quantization block that improves robustness. We further propose five systematic folds on BraTS2023 for rigorous evaluation of segmentation techniques under diverse conditions and present analysis of common failure scenarios. On the 20% test set used by recent methods, our model achieves Dice improvements of 0.10% for whole tumor, 1.75% for tumor core, and 0.93% for enhancing tumor. Evaluations on the proposed systematic folds demonstrate that our model maintains competitive whole tumor accuracy while achieving clear average Dice gains of 1.16% for tumor core and 1.68% for enhancing tumor over existing state-of-the-art. Furthermore, our model achieves a 15x efficiency improvement while maintaining high segmentation accuracy, highlighting its robustness and computational advantage over existing methods.
- Abstract(参考訳): 脳腫瘍の正確なセグメンテーションは、臨床診断と治療に重要であるが、腫瘍の不均一性のために依然として困難である。
マンバを拠点とするState Space Modelsは、有望なパフォーマンスを示している。
しかし、他のニューラルネットワークアーキテクチャよりも計算効率が高いにもかかわらず、複数の空間軸にまたがる逐次的特徴計算のため、このタスクにはかなりのオーバーヘッドが生じる。
さらに、さまざまなBraTSデータパーティションにまたがるロバスト性は、ほとんど未検討のままであり、信頼性評価において重要なギャップを残している。
この問題に対処するために,我々はまず,計算オーバーヘッドを最小限に抑えながら,マルチスケールの長距離依存関係を捕捉する効率的な3次元分割モデルである,二重解像度双方向マンバ(DRBD-Mamba)を提案する。
空間充填曲線を利用して3D-to-1D特徴写像の空間的局所性を保ち、計算コストのかかる多軸特徴走査への依存を減らす。
特徴表現を豊かにするために,前と逆のコンテキストを適応的に統合するゲート融合モジュールと,ロバスト性を改善する量子化ブロックを提案する。
さらに,BraTS2023上の5つの系統的なフォールドを提案し,多様な条件下でのセグメンテーション手法の厳密な評価と,一般的な故障シナリオの解析を行った。
近年の方法による20%テストセットでは,全腫瘍では0.10%,腫瘍コアでは1.75%,腫瘍拡張では0.93%のDice改善が達成されている。
以上より, 本モデルでは, 腫瘍コア1.16%, 既存の最先端の腫瘍を1.68%向上させながら, 抗腫瘍効果の維持を図った。
さらに,本モデルでは,高いセグメンテーション精度を維持しながら15倍の効率向上を実現し,既存の手法よりも頑健さと計算上の優位性を強調した。
関連論文リスト
- MAST-Pro: Dynamic Mixture-of-Experts for Adaptive Segmentation of Pan-Tumors with Knowledge-Driven Prompts [54.915060471994686]
MAST-Proは,ダイナミックなMixture-of-Experts(D-MoE)とパン腫瘍セグメンテーションのための知識駆動プロンプトを統合した新しいフレームワークである。
具体的には、テキストと解剖学的プロンプトは、腫瘍表現学習を導くドメイン固有の事前情報を提供し、D-MoEは、ジェネリックと腫瘍固有の特徴学習のバランスをとる専門家を動的に選択する。
マルチ解剖学的腫瘍データセットの実験では、MAST-Proは最先端のアプローチよりも優れており、トレーニング可能なパラメータを91.04%削減し、平均改善の5.20%を達成している。
論文 参考訳(メタデータ) (2025-03-18T15:39:44Z) - Enhancing Brain Tumor Segmentation Using Channel Attention and Transfer learning [5.062500255359342]
自動脳腫瘍分割のためのResUNetアーキテクチャを提案する。
EfficientNetB0エンコーダは、事前訓練された機能を活用して、機能の抽出効率を向上させる。
チャネルアテンション機構は、腫瘍関連の特徴に焦点を絞るモデルを強化する。
論文 参考訳(メタデータ) (2025-01-19T23:58:16Z) - MBDRes-U-Net: Multi-Scale Lightweight Brain Tumor Segmentation Network [0.0]
本研究では,マルチブランチ残差ブロックを統合した3次元U-Netフレームワークを用いたMBDRes-U-Netモデルを提案する。
モデルの計算負担は分岐戦略によって低減され、マルチモーダル画像のリッチな局所的特徴を効果的に活用する。
論文 参考訳(メタデータ) (2024-11-04T09:03:43Z) - Lumbar Spine Tumor Segmentation and Localization in T2 MRI Images Using AI [2.9746083684997418]
本研究は, 脊椎腫瘍の領域分割と局所化をAIアプローチで自動化することを目的とした, 新たなデータ拡張手法を提案する。
畳み込みニューラルネットワーク(CNN)アーキテクチャは、腫瘍の分類に用いられている。3次元の椎骨分割とラベル付け技術は、腰椎の腫瘍の正確な位置を特定するのに役立つ。
その結果, 腫瘍分節の99%の精度, 腫瘍分類の98%の精度, 腫瘍局在の99%の精度が得られた。
論文 参考訳(メタデータ) (2024-05-07T05:55:50Z) - An Optimization Framework for Processing and Transfer Learning for the
Brain Tumor Segmentation [2.0886519175557368]
我々は脳腫瘍セグメント化のための3次元U-Netモデルに基づく最適化フレームワークを構築した。
このフレームワークには、さまざまな前処理や後処理技術、トランスファーラーニングなど、さまざまなテクニックが組み込まれている。
検証データセット上で、この多モード脳腫瘍セグメンテーションフレームワークは、それぞれチャレンジ1、2、3におけるDiceスコア平均0.79、0.72、0.74を達成する。
論文 参考訳(メタデータ) (2024-02-10T18:03:15Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
医用画像の領域分割を行うために, SAMを2次元から3次元に変換する新しい適応法を提案する。
本モデルでは, 腎腫瘍, 膵腫瘍, 大腸癌の3つのタスクのうち8.25%, 29.87%, 10.11%の3つのタスクにおいて, ドメイン・オブ・ザ・アーティヴ・メディカル・イメージ・セグメンテーション・モデルより優れ, 肝腫瘍セグメンテーションでも同様の性能が得られる。
論文 参考訳(メタデータ) (2023-06-23T12:09:52Z) - propnet: Propagating 2D Annotation to 3D Segmentation for Gastric Tumors
on CT Scans [16.135854257728337]
本研究は,3次元腫瘍セグメンテーションの課題に対処するために,人間の誘導した知識とユニークなモジュールを利用したモデルを提案する。
98件の患者スキャンと30件のバリデーションを行い,手作業によるアノテーション(約0.803)との相当な一致を実現し,効率を向上する。
論文 参考訳(メタデータ) (2023-05-29T03:24:02Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net
neural networks: a BraTS 2020 challenge solution [56.17099252139182]
U-netのようなニューラルネットワークを用いた脳腫瘍セグメント化作業の自動化と標準化を行う。
2つの独立したモデルのアンサンブルが訓練され、それぞれが脳腫瘍のセグメンテーションマップを作成した。
我々の解は、最終試験データセットにおいて、Diceの0.79、0.89、0.84、およびHausdorffの95%の20.4、6.7、19.5mmを達成した。
論文 参考訳(メタデータ) (2020-10-30T14:36:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。