論文の概要: MR.Rec: Synergizing Memory and Reasoning for Personalized Recommendation Assistant with LLMs
- arxiv url: http://arxiv.org/abs/2510.14629v1
- Date: Thu, 16 Oct 2025 12:40:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-17 21:15:14.855334
- Title: MR.Rec: Synergizing Memory and Reasoning for Personalized Recommendation Assistant with LLMs
- Title(参考訳): MR.Rec:LLMを用いたパーソナライズされたレコメンデーションアシスタントのための記憶と推論の同期化
- Authors: Jiani Huang, Xingchen Zou, Lianghao Xia, Qing Li,
- Abstract要約: MR.Recは、LLM(Large Language Models)ベースのレコメンデーションのために、メモリと推論をシナジする新しいフレームワークである。
パーソナライズを実現するため、我々は、関連する外部メモリを効率よくインデックスし、検索する総合検索拡張生成システム(RAG)を開発した。
動的メモリ検索と適応推論を組み合わせることで、このアプローチはより正確でコンテキストを認識し、高度にパーソナライズされたレコメンデーションを保証する。
- 参考スコア(独自算出の注目度): 23.593398623128735
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The application of Large Language Models (LLMs) in recommender systems faces key challenges in delivering deep personalization and intelligent reasoning, especially for interactive scenarios. Current methods are often constrained by limited context windows and single-turn reasoning, hindering their ability to capture dynamic user preferences and proactively reason over recommendation contexts. To address these limitations, we propose MR.Rec, a novel framework that synergizes memory and reasoning for LLM-based recommendations. To achieve personalization, we develop a comprehensive Retrieval-Augmented Generation (RAG) system that efficiently indexes and retrieves relevant external memory to enhance LLM personalization capabilities. Furthermore, to enable the synergy between memory and reasoning, our RAG system goes beyond conventional query-based retrieval by integrating reasoning enhanced memory retrieval. Finally, we design a reinforcement learning framework that trains the LLM to autonomously learn effective strategies for both memory utilization and reasoning refinement. By combining dynamic memory retrieval with adaptive reasoning, this approach ensures more accurate, context-aware, and highly personalized recommendations. Extensive experiments demonstrate that MR.Rec significantly outperforms state-of-the-art baselines across multiple metrics, validating its efficacy in delivering intelligent and personalized recommendations. We will release code and data upon paper notification.
- Abstract(参考訳): 推薦システムにおけるLarge Language Models(LLM)の適用は、特に対話的なシナリオにおいて、深いパーソナライズとインテリジェントな推論を実現する上で重要な課題に直面している。
現在のメソッドは、制限されたコンテキストウィンドウとシングルターン推論によって制約されることが多く、動的なユーザの好みをキャプチャし、リコメンデーションコンテキストよりも積極的に推論する能力を妨げている。
MR.Recは,LLMに基づくリコメンデーションのためのメモリと推論を相乗化するための新しいフレームワークである。
パーソナライズを実現するために,LLMパーソナライズ機能を高めるために,関連メモリを効率よくインデックスし,検索する総合検索拡張生成システム(RAG)を開発した。
さらに、メモリと推論の相乗効果を実現するために、RAGシステムは、推論強化メモリ検索を統合することで、従来のクエリベースの検索を超越する。
最後に、LLMにメモリ利用と推論の両面で効果的な戦略を自律的に学習させる強化学習フレームワークを設計する。
動的メモリ検索と適応推論を組み合わせることで、このアプローチはより正確でコンテキストを認識し、高度にパーソナライズされたレコメンデーションを保証する。
MR.Recは、複数のメトリクスで最先端のベースラインを著しく上回り、インテリジェントでパーソナライズされたレコメンデーションを提供することの有効性を検証している。
コードとデータは、紙の通知で公開します。
関連論文リスト
- Learn to Memorize: Optimizing LLM-based Agents with Adaptive Memory Framework [33.739298910759544]
メモリサイクルをモデル化し,適応型・データ駆動型メモリフレームワークを用いたLCMエージェントの最適化を提案する。
具体的には、メモリ検索を容易にするためのMoEゲート関数を設計し、メモリ利用を改善するための学習可能な集約プロセスを提案し、メモリ記憶に適応するためのタスク固有のリフレクションを開発する。
論文 参考訳(メタデータ) (2025-08-15T12:22:52Z) - From Single to Multi-Granularity: Toward Long-Term Memory Association and Selection of Conversational Agents [79.87304940020256]
大言語モデル(LLM)は会話エージェントで広く採用されている。
MemGASは、多粒度アソシエーション、適応選択、検索を構築することにより、メモリ統合を強化するフレームワークである。
4つの長期メモリベンチマークの実験により、MemGASは質問応答と検索タスクの両方において最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2025-05-26T06:13:07Z) - R$^2$ec: Towards Large Recommender Models with Reasoning [59.32598867813266]
R$2$ecは、本質的な推論能力を持つ統一された大型レコメンデータモデルである。
R$2$ecは、推論チェーン生成と効率的なアイテム予測の両方を単一のモデルでサポートするデュアルヘッドアーキテクチャを導入している。
注釈付き推論データの欠如を克服するため、強化学習フレームワークであるRecPOを設計する。
論文 参考訳(メタデータ) (2025-05-22T17:55:43Z) - DeepRec: Towards a Deep Dive Into the Item Space with Large Language Model Based Recommendation [83.21140655248624]
大型言語モデル (LLM) はレコメンダシステム (RS) に導入された。
本稿では, LLM と TRM の自律的マルチターンインタラクションを実現する新しい RS である DeepRec を提案する。
公開データセットの実験では、DeepRecは従来のものとLLMベースのベースラインの両方で大幅にパフォーマンスが向上している。
論文 参考訳(メタデータ) (2025-05-22T15:49:38Z) - Laser: Parameter-Efficient LLM Bi-Tuning for Sequential Recommendation with Collaborative Information [76.62949982303532]
協調情報を用いた逐次レコメンデーションのためのパラメータ効率の高い大規模言語モデルバイチューニングフレームワーク(Laser)を提案する。
我々のレーザーでは,プレフィックスを用いてユーザと協調的な情報を取り込み,LLMをレコメンデーションタスクに適応させ,サフィックスは言語空間からレコメンデーションスペースへのLLMの出力埋め込みをリコメンデーション項目レコメンデーションスペースに変換する。
M-Formerは軽量なMoEベースのクエリ変換器で、クエリ専門家のセットを使用して、凍結IDベースのシーケンシャルレコメンデータシステムによって符号化された多様なユーザ固有の協調情報を統合する。
論文 参考訳(メタデータ) (2024-09-03T04:55:03Z) - LANE: Logic Alignment of Non-tuning Large Language Models and Online Recommendation Systems for Explainable Reason Generation [15.972926854420619]
大きな言語モデル(LLM)を活用することで、包括的なレコメンデーションロジック生成の新しい機会を提供する。
レコメンデーションタスクのための微調整LDMモデルは、計算コストと既存のシステムとのアライメントの問題を引き起こす。
本研究は,LLMとオンラインレコメンデーションシステムとの連携を,LLMのチューニングを伴わない効果的戦略LANEを提案する。
論文 参考訳(メタデータ) (2024-07-03T06:20:31Z) - DRDT: Dynamic Reflection with Divergent Thinking for LLM-based
Sequential Recommendation [53.62727171363384]
進化的思考を伴う動的反射(Dynamic Reflection with Divergent Thinking)という新しい推論原理を導入する。
我々の方法論はダイナミックリフレクション(動的リフレクション)であり、探索、批評、反射を通じて人間の学習をエミュレートするプロセスである。
6つの事前学習 LLM を用いた3つのデータセットに対するアプローチの評価を行った。
論文 参考訳(メタデータ) (2023-12-18T16:41:22Z) - Representation Learning with Large Language Models for Recommendation [33.040389989173825]
本稿では,大規模言語モデル (LLM) を用いた表現学習によるレコメンデータの強化を目的とした,モデルに依存しないフレームワーク RLMRec を提案する。
RLMRecには補助的なテキスト信号が組み込まれており、LLMが権限を持つユーザ/イテムプロファイリングパラダイムを開発し、LLMの意味空間と協調的関係信号の表現空間を整合させる。
論文 参考訳(メタデータ) (2023-10-24T15:51:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。