論文の概要: FedPPA: Progressive Parameter Alignment for Personalized Federated Learning
- arxiv url: http://arxiv.org/abs/2510.14698v1
- Date: Thu, 16 Oct 2025 14:03:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-17 21:15:14.884964
- Title: FedPPA: Progressive Parameter Alignment for Personalized Federated Learning
- Title(参考訳): FedPPA: 個人化フェデレーション学習のためのプログレッシブパラメータアライメント
- Authors: Maulidi Adi Prasetia, Muhamad Risqi U. Saputra, Guntur Dharma Putra,
- Abstract要約: フェデレートラーニング(FL)は、複数のクライアントがデータを共有せずに協調的にモデルをトレーニングできる、分散されたプライバシ保護機械学習パラダイムとして設計されている。
実世界のシナリオでは、クライアントは不均一な計算資源を持ち、非独立で同一の分散データ(非IID)を保持し、トレーニング中に重大な課題を生じさせる。
本稿では,クライアント間の共通レイヤの重み付けとグローバルモデルの重み付けを段階的に整合させるプログレッシブアライメント(FedPPA)を提案する。
MNIST、FMNIST、CIFAR-10を含む3つの画像分類データセットの実験は、FedPPAが既存のFLアルゴリズムより一貫して優れていることを示した。
- 参考スコア(独自算出の注目度): 0.9931624906346306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) is designed as a decentralized, privacy-preserving machine learning paradigm that enables multiple clients to collaboratively train a model without sharing their data. In real-world scenarios, however, clients often have heterogeneous computational resources and hold non-independent and identically distributed data (non-IID), which poses significant challenges during training. Personalized Federated Learning (PFL) has emerged to address these issues by customizing models for each client based on their unique data distribution. Despite its potential, existing PFL approaches typically overlook the coexistence of model and data heterogeneity arising from clients with diverse computational capabilities. To overcome this limitation, we propose a novel method, called Progressive Parameter Alignment (FedPPA), which progressively aligns the weights of common layers across clients with the global model's weights. Our approach not only mitigates inconsistencies between global and local models during client updates, but also preserves client's local knowledge, thereby enhancing personalization robustness in non-IID settings. To further enhance the global model performance while retaining strong personalization, we also integrate entropy-based weighted averaging into the FedPPA framework. Experiments on three image classification datasets, including MNIST, FMNIST, and CIFAR-10, demonstrate that FedPPA consistently outperforms existing FL algorithms, achieving superior performance in personalized adaptation.
- Abstract(参考訳): フェデレートラーニング(FL)は、複数のクライアントがデータを共有せずに協調的にモデルをトレーニングできる、分散されたプライバシ保護機械学習パラダイムとして設計されている。
しかし、実世界のシナリオでは、クライアントは不均一な計算資源を持ち、非独立で同一の分散データ(非IID)を保持し、トレーニング中に重大な課題を生じさせる。
パーソナライズド・フェデレート・ラーニング(PFL)は、それぞれのデータ分布に基づいて各クライアントのモデルをカスタマイズすることで、これらの問題に対処する。
その可能性にもかかわらず、既存のPFLアプローチは、様々な計算能力を持つクライアントから生じるモデルとデータの異質性の共存を概ね見落としている。
この制限を克服するために,クライアント間の共通層重みとグローバルモデルの重みを段階的に整合させる,プログレッシブパラメータアライメント(FedPPA)と呼ばれる新しい手法を提案する。
当社のアプローチは,クライアント更新時のグローバルモデルとローカルモデルとの整合性を緩和するだけでなく,クライアントのローカル知識を保護し,非IID設定におけるパーソナライゼーションの堅牢性を高める。
強力なパーソナライゼーションを維持しつつ,グローバルモデルの性能をさらに向上するため,我々は,エントロピーに基づく重み付き平均化をFedPPAフレームワークに統合する。
MNIST、FMNIST、CIFAR-10を含む3つの画像分類データセットの実験は、FedPPAが既存のFLアルゴリズムを一貫して上回り、パーソナライズされた適応において優れた性能を発揮することを示した。
関連論文リスト
- Not All Clients Are Equal: Collaborative Model Personalization on Heterogeneous Multi-Modal Clients [59.52341877720199]
計算コストを伴わずに異種アーキテクチャ間の知識共有を可能にするFedMosaicを提案する。
実世界のタスクの多様性を模倣するために,40の異なるタスクにまたがるマルチモーダルPFLベンチマークを提案する。
実証研究は、FedMosaicが最先端のPFL法より優れていることを示している。
論文 参考訳(メタデータ) (2025-05-20T09:17:07Z) - Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning(FL)は、クライアントが独自のデータをプライベートに保ちながら、協調的にモデルをトレーニングする分散学習パラダイムである。
本稿では,新しいフェデレーション最適化手法のクラスであるフェデレーション中心適応最適化を提案する。
論文 参考訳(メタデータ) (2025-01-17T04:00:50Z) - FedReMa: Improving Personalized Federated Learning via Leveraging the Most Relevant Clients [13.98392319567057]
Federated Learning (FL) は分散機械学習のパラダイムであり、分散計算と周期モデル合成によってグローバルに堅牢なモデルを実現する。
広く採用されているにもかかわらず、既存のFLとPFLの作業は、クラス不均衡の問題に包括的に対処していない。
本稿では,適応型クライアント間コラーニング手法を用いて,クラス不均衡に対処できる効率的なPFLアルゴリズムであるFedReMaを提案する。
論文 参考訳(メタデータ) (2024-11-04T05:44:28Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
フェデレートラーニング(FL)は、分散データに基づく機械学習モデルの協調トレーニングを可能にする。
クライアント間でのデータはしばしば、クラス不均衡、特徴分散スキュー、サンプルサイズ不均衡、その他の現象によって大きく異なる。
本稿では,バイレベル最適化を用いた新しいベイズPFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-29T11:28:06Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Personalized Federated Learning of Probabilistic Models: A PAC-Bayesian Approach [37.90061908863874]
Federated Learningは、複数のクライアントが格納するプライベートおよび分散データから、共有モデルを推論することを目的としている。
本稿では確率モデルのPFLのためのPAC-PFLフレームワークを紹介する。
従来のPFLアルゴリズムとは異なり、PAC-PFLはパーソナライズされたモデルを1つの共有モデルに向けて正規化していない。
論文 参考訳(メタデータ) (2024-01-16T13:30:37Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - Visual Prompt Based Personalized Federated Learning [83.04104655903846]
pFedPTと呼ばれる画像分類タスクのための新しいPFLフレームワークを提案し、クライアントのローカルデータ配信情報を暗黙的に表現するためにパーソナライズされた視覚的プロンプトを利用する。
CIFAR10とCIFAR100データセットの実験では、pFedPTは様々な設定でいくつかの最先端(SOTA)PFLアルゴリズムより優れていた。
論文 参考訳(メタデータ) (2023-03-15T15:02:15Z) - Personalizing or Not: Dynamically Personalized Federated Learning with
Incentives [37.42347737911428]
個人データを共有せずにパーソナライズされたモデルを学習するためのパーソナライズド・フェデレーション・ラーニング(FL)を提案する。
パーソナライズレートは、パーソナライズされたモデルのトレーニングを希望する顧客の割合として測定され、フェデレーションされた設定に導入され、DyPFLを提案する。
この技術は、クライアントがローカルモデルをパーソナライズすることへのインセンティブを与えると同時に、より優れたパフォーマンスでグローバルモデルを採用できるようにする。
論文 参考訳(メタデータ) (2022-08-12T09:51:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。