論文の概要: Causal Discovery for Linear DAGs with Dependent Latent Variables via Higher-order Cumulants
- arxiv url: http://arxiv.org/abs/2510.14780v1
- Date: Thu, 16 Oct 2025 15:15:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-17 21:15:14.918378
- Title: Causal Discovery for Linear DAGs with Dependent Latent Variables via Higher-order Cumulants
- Title(参考訳): 高次累積による従属変数を持つ線形DAGの因果発見
- Authors: Ming Cai, Penggang Gao, Hisayuki Hara,
- Abstract要約: 既存の手法では、相互に独立した潜在的共同創設者を仮定するか、観測変数間の因果関係を持つモデルを適切に扱うことができない。
本稿では,LvLiNGAMにおける因果DAGを同定するアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 7.808674222118538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the problem of estimating causal directed acyclic graphs in linear non-Gaussian acyclic models with latent confounders (LvLiNGAM). Existing methods assume mutually independent latent confounders or cannot properly handle models with causal relationships among observed variables. We propose a novel algorithm that identifies causal DAGs in LvLiNGAM, allowing causal structures among latent variables, among observed variables, and between the two. The proposed method leverages higher-order cumulants of observed data to identify the causal structure. Extensive simulations and experiments with real-world data demonstrate the validity and practical utility of the proposed algorithm.
- Abstract(参考訳): 本稿では,LvLiNGAMを用いた線形非ガウス非巡回モデルにおける因果非巡回グラフの推定の問題に対処する。
既存の手法では、相互に独立した潜在的共同創設者を仮定するか、観測変数間の因果関係を持つモデルを適切に扱うことができない。
本稿では,LvLiNGAMにおける因果DAGを同定するアルゴリズムを提案する。
提案手法は観測データの高次累積を利用して因果構造を同定する。
実世界のデータを用いた大規模なシミュレーションと実験により,提案アルゴリズムの有効性と実用性を実証した。
関連論文リスト
- Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
因果モデルでは、観測データから変数間の因果関係を解き明かそうとしている。
本稿では,変数が線形に疎結合な関係を示す設定のための新しい因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-02T04:01:38Z) - Scalable Variational Causal Discovery Unconstrained by Acyclicity [6.954510776782872]
観測データから得られた因果グラフ上の後部分布を学習するために,スケーラブルなベイズ的手法を提案する。
有効な非巡回因果グラフを生成することができる新しい微分可能なDAGサンプリング手法を提案する。
連続領域上の単純な変分分布を用いて因果グラフ上の後部分布をモデル化することができる。
論文 参考訳(メタデータ) (2024-07-06T07:56:23Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
因果表現学習は、観測された低レベルデータから潜在的な高レベル因果表現を明らかにすることを目的としている。
主な課題の1つは、識別可能性(identifiability)として知られるこれらの潜伏因果モデルを特定する信頼性の高い保証を提供することである。
論文 参考訳(メタデータ) (2023-10-24T07:46:10Z) - Order-based Structure Learning with Normalizing Flows [7.972479571606131]
観測データの因果構造を推定することは、グラフサイズと超指数的にスケールする難しい探索問題である。
既存の手法では、連続緩和を用いてこの問題を計算的に取り扱えるようにしているが、しばしばデータ生成過程を加法雑音モデル(ANM)に制限する。
自己回帰正規化フローを用いてこれらの仮定を緩和するフレームワークである,正規化フローを用いた秩序に基づく構造学習(OSLow)を提案する。
論文 参考訳(メタデータ) (2023-08-14T22:17:33Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
我々は、軽度の仮定の下で、識別性と学習可能性に関する保証を提供する。
我々は,線形制約付き結合テンソル分解に基づく効率的なアルゴリズムを開発し,スケーラブルで保証可能な解を得る。
論文 参考訳(メタデータ) (2021-01-17T07:48:45Z) - Causal discovery of linear non-Gaussian acyclic models in the presence
of latent confounders [6.1221613913018675]
本稿では,反復因果探索 (RCD) と呼ばれる因果関数モデルに基づく手法を提案する。
RCDは、少数の観測変数間で因果方向を推論し、その関係が潜伏した共同設立者の影響を受けているかどうかを判定する。
論文 参考訳(メタデータ) (2020-01-13T12:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。