論文の概要: Rethinking Convergence in Deep Learning: The Predictive-Corrective Paradigm for Anatomy-Informed Brain MRI Segmentation
- arxiv url: http://arxiv.org/abs/2510.15439v1
- Date: Fri, 17 Oct 2025 08:51:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-20 20:17:34.543854
- Title: Rethinking Convergence in Deep Learning: The Predictive-Corrective Paradigm for Anatomy-Informed Brain MRI Segmentation
- Title(参考訳): 深層学習における収束を再考する:解剖学的インフォームド脳MRIの予測補正パラダイム
- Authors: Feifei Zhang, Zhenhong Jia, Sensen Song, Fei Shi, Dayong Ren,
- Abstract要約: 本稿では,学習を根本的に加速させるために,モデルタスクを分離するフレームワークである予測補正(PC)パラダイムを紹介する。
PCambaNetは2つの相乗的モジュールから構成される。第一に、予測優先モジュール(PPM)は計算コストの低い粗い近似を生成する。
次に、Corrective Residual Network (CRN)は、残差エラーをモデル化することを学び、ネットワークのフル容量をこれらの課題領域の精製に集中させる。
- 参考スコア(独自算出の注目度): 30.94379425064039
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the remarkable success of the end-to-end paradigm in deep learning, it often suffers from slow convergence and heavy reliance on large-scale datasets, which fundamentally limits its efficiency and applicability in data-scarce domains such as medical imaging. In this work, we introduce the Predictive-Corrective (PC) paradigm, a framework that decouples the modeling task to fundamentally accelerate learning. Building upon this paradigm, we propose a novel network, termed PCMambaNet. PCMambaNet is composed of two synergistic modules. First, the Predictive Prior Module (PPM) generates a coarse approximation at low computational cost, thereby anchoring the search space. Specifically, the PPM leverages anatomical knowledge-bilateral symmetry-to predict a 'focus map' of diagnostically relevant asymmetric regions. Next, the Corrective Residual Network (CRN) learns to model the residual error, focusing the network's full capacity on refining these challenging regions and delineating precise pathological boundaries. Extensive experiments on high-resolution brain MRI segmentation demonstrate that PCMambaNet achieves state-of-the-art accuracy while converging within only 1-5 epochs-a performance unattainable by conventional end-to-end models. This dramatic acceleration highlights that by explicitly incorporating domain knowledge to simplify the learning objective, PCMambaNet effectively mitigates data inefficiency and overfitting.
- Abstract(参考訳): ディープラーニングにおけるエンドツーエンドパラダイムの顕著な成功にもかかわらず、医療画像のようなデータ共有領域における効率性と適用性を根本的に制限する大規模なデータセットへの緩やかな収束と重い依存に悩まされることが多い。
本研究は,学習を根本的に高速化するために,モデリングタスクを分離するフレームワークである予測補正(PC)パラダイムを紹介する。
このパラダイムに基づいて,PCMambaNetと呼ばれる新しいネットワークを提案する。
PCMambaNetは2つの相乗的モジュールで構成されている。
第一に、予測優先モジュール(PPM)は計算コストの低い粗い近似を生成し、探索空間をアンロックする。
具体的には、PPMは解剖学的知識とバイラテラル対称性を利用して、診断に関連のある非対称領域の「焦点マップ」を予測する。
次に、CRN(Corrective Residual Network)は、残差をモデル化することを学び、これらの課題領域を精査し、正確な病理境界を定めることにネットワークの全容量を集中させる。
高分解能脳MRIセグメント化に関する大規模な実験により、PCMambaNetは最先端の精度を達成し、従来のエンド・ツー・エンドモデルでは達成不可能な1-5エポックでのみ収束することを示した。
この劇的な加速により、学習目的を単純化するためにドメイン知識を明示的に組み込むことで、PCMambaNetはデータ非効率性と過剰適合を効果的に軽減する。
関連論文リスト
- Adapting HFMCA to Graph Data: Self-Supervised Learning for Generalizable fMRI Representations [57.054499278843856]
機能的磁気共鳴画像(fMRI)解析は、データセットのサイズが限られ、研究間でのドメインの変動が原因で大きな課題に直面している。
コンピュータビジョンにインスパイアされた従来の自己教師付き学習手法は、正と負のサンプルペアに依存することが多い。
本稿では,最近開発された階層関数最大相関アルゴリズム(HFMCA)をグラフ構造fMRIデータに適用することを提案する。
論文 参考訳(メタデータ) (2025-10-05T12:35:01Z) - Bridging Foundation Models and Efficient Architectures: A Modular Brain Imaging Framework with Local Masking and Pretrained Representation Learning [7.591083752535149]
ファンデーションモデル(FM)の原則を効率よくドメイン固有のアーキテクチャと統合するモジュラーフレームワークを提案する。
平均絶対誤差は, 年齢予測では5.343, 流体知能では2.940, ピアソン相関係数は0.928, 0.887であった。
この研究は、LLMに基づくfMRI分析のアプローチに代わる堅牢で解釈可能な代替手段を提供し、脳の老化と認知機能に関する新たな洞察を提供する。
論文 参考訳(メタデータ) (2025-08-09T08:06:01Z) - Optimizing Universal Lesion Segmentation: State Space Model-Guided Hierarchical Networks with Feature Importance Adjustment [0.0]
我々は,MAMBAフレームワークにステートスペースモデル(SSM)とアドバンスト階層ネットワーク(AHNet)を統合したMamba-Ahnetを紹介する。
Mamba-Ahnetは、SSMの特徴抽出と理解をAHNetの注意機構と画像再構成と組み合わせ、セグメンテーションの精度と堅牢性を高めることを目的としている。
論文 参考訳(メタデータ) (2024-04-26T08:15:43Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
InDuDoNet+と呼ばれる新しい解釈可能な二重ドメインネットワークを構築し、CT画像の微細な埋め込みを行う。
異なる組織間のCT値を分析し,InDuDoNet+の事前観測ネットワークにマージすることで,その一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-12-23T15:52:37Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
内視鏡下粘膜下郭清術における高精度かつリアルタイムなランドマーク検出のための形状認識型関係ネットワークを提案する。
まず,ランドマーク間の空間的関係に関する先行知識を直感的に表現する関係キーポイント・ヒートマップを自動生成するアルゴリズムを考案する。
次に、事前知識を学習プロセスに段階的に組み込むために、2つの補完的な正規化手法を開発する。
論文 参考訳(メタデータ) (2021-11-08T07:57:30Z) - DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation [0.0]
本稿では,2次元CNNと3次元CNNの特徴を融合させることにより,これらの要件を満たす新しいDFENetを提案する。
提案手法は, 既存の方法よりも頑健で正確であり, バイオメディカルな応用に頼ることができる。
論文 参考訳(メタデータ) (2021-05-17T15:43:59Z) - Learning Multi-Modal Volumetric Prostate Registration with Weak
Inter-Subject Spatial Correspondence [2.6894568533991543]
MRシークエンスにおける前立腺の位置に関する事前情報のための補助入力をニューラルネットワークに導入する。
MR-TRUS前立腺データのラベルが弱いことから,最先端のディープラーニング手法に匹敵する登録品質を示した。
論文 参考訳(メタデータ) (2021-02-09T16:48:59Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Context-Aware Refinement Network Incorporating Structural Connectivity
Prior for Brain Midline Delineation [50.868845400939314]
UNetによって生成された特徴ピラミッド表現を洗練・統合するための文脈対応改良ネットワーク(CAR-Net)を提案する。
正中線における脳の構造的接続性を維持するため、我々は新しい接続性レギュラーロスを導入する。
提案手法は, パラメータを少なくし, 4つの評価指標で3つの最先端手法より優れる。
論文 参考訳(メタデータ) (2020-07-10T14:01:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。