論文の概要: The 3rd Place Solution of CCIR CUP 2025: A Framework for Retrieval-Augmented Generation in Multi-Turn Legal Conversation
- arxiv url: http://arxiv.org/abs/2510.15722v1
- Date: Fri, 17 Oct 2025 15:12:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-20 20:17:34.670462
- Title: The 3rd Place Solution of CCIR CUP 2025: A Framework for Retrieval-Augmented Generation in Multi-Turn Legal Conversation
- Title(参考訳): CCIR CUP 2025の3番目の解決法:多言語会話における検索・拡張生成のためのフレームワーク
- Authors: Da Li, Zecheng Fang, Qiang Yan, Wei Huang, Xuanpu Luo,
- Abstract要約: CCIR CUP 2025 において,本手法を "Legal Knowledge Retrieval and Generation" に導入する。
情報検索と大規模言語モデルの利点を組み合わせることで、RAGは関連性および文脈的に適切な応答を生成することができる。
- 参考スコア(独自算出の注目度): 7.363804447752668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation has made significant progress in the field of natural language processing. By combining the advantages of information retrieval and large language models, RAG can generate relevant and contextually appropriate responses based on items retrieved from reliable sources. This technology has demonstrated outstanding performance across multiple domains, but its application in the legal field remains in its exploratory phase. In this paper, we introduce our approach for "Legal Knowledge Retrieval and Generation" in CCIR CUP 2025, which leverages large language models and information retrieval systems to provide responses based on laws in response to user questions.
- Abstract(参考訳): Retrieval-Augmented Generationは自然言語処理の分野で大きな進歩を遂げた。
情報検索と大規模言語モデルの利点を組み合わせることで、RAGは信頼できる情報源から検索した項目に基づいて、関連性および文脈的に適切な応答を生成することができる。
この技術は、複数の領域で顕著な性能を示してきたが、法分野への応用は探索段階のままである。
本稿では, CCIR CUP 2025において, 大規模言語モデルと情報検索システムを活用し, ユーザの質問に応答する法則に基づく応答を提供する「言語知識検索・生成」を提案する。
関連論文リスト
- All for law and law for all: Adaptive RAG Pipeline for Legal Research [0.8819595592190884]
Retrieval-Augmented Generation (RAG)は、テキスト生成タスクのアプローチ方法を変えました。
この作業では、以前のベースラインを改善した、新しいエンドツーエンドのRAGパイプラインを導入している。
論文 参考訳(メタデータ) (2025-08-18T17:14:03Z) - LegalRAG: A Hybrid RAG System for Multilingual Legal Information Retrieval [7.059964549363294]
我々は、規制文書、特にバングラデシュ警察ガゼットのための効率的なバイリンガル質問応答フレームワークを開発する。
提案手法では,情報検索と応答生成を強化するために,現代の検索拡張生成(RAG)パイプラインを用いる。
このシステムは、特定の政府法的な通知を効率的に検索し、法的な情報をよりアクセスしやすくする。
論文 参考訳(メタデータ) (2025-04-19T06:09:54Z) - Retrieval Augmented Generation and Understanding in Vision: A Survey and New Outlook [85.43403500874889]
Retrieval-augmented Generation (RAG) は人工知能(AI)において重要な技術である。
具体化されたAIのためのRAGの最近の進歩は、特に計画、タスク実行、マルチモーダル知覚、インタラクション、特殊ドメインの応用に焦点を当てている。
論文 参考訳(メタデータ) (2025-03-23T10:33:28Z) - Exploiting LLMs' Reasoning Capability to Infer Implicit Concepts in Legal Information Retrieval [6.952344923975001]
本研究は,大規模言語モデル(LLM)の論理的推論能力を活用し,関連する法的用語を特定することに焦点を当てる。
提案する検索システムは,検索精度を向上させるために,用語ベースの拡張とクエリ再構成の付加情報を統合する。
COLIEE 2022とCOLIEE 2023データセットの実験は、LLMからの余分な知識が語彙的および意味的ランキングモデルの検索結果の改善に役立つことを示している。
論文 参考訳(メタデータ) (2024-10-16T01:34:14Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
大規模言語モデル(LLM)は、言語理解と生成において革命的な能力を示している。
Retrieval-Augmented Generation (RAG)は、信頼性と最新の外部知識を提供する。
RA-LLMは、モデルの内部知識に頼るのではなく、外部および権威的な知識ベースを活用するために登場した。
論文 参考訳(メタデータ) (2024-05-10T02:48:45Z) - A Survey on Retrieval-Augmented Text Generation for Large Language Models [1.4579344926652844]
Retrieval-Augmented Generation (RAG)は、検索手法とディープラーニングの進歩を融合する。
本稿では,RAGパラダイムを検索前,検索後,検索後,生成の4つのカテゴリに分類する。
RAGの進化を概説し、重要な研究の分析を通して分野の進歩について論じている。
論文 参考訳(メタデータ) (2024-04-17T01:27:42Z) - NeCo@ALQAC 2023: Legal Domain Knowledge Acquisition for Low-Resource
Languages through Data Enrichment [2.441072488254427]
本稿では,ベトナムのテキスト処理タスクに対するNeCo Teamのソリューションを,ALQAC 2023(Automated Legal Question Answering Competition 2023)で紹介する。
法的な文書検索タスクでは,類似度ランキングと深層学習モデルを組み合わせた手法が採用されているが,第2の課題では,異なる質問タイプを扱うための適応的手法が提案されている。
提案手法は, 競争の両課題において, 法的分野における質問応答システムの潜在的メリットと有効性を示す, 卓越した結果を達成している。
論文 参考訳(メタデータ) (2023-09-11T14:43:45Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
検索と生成を反復的に同期させるIter-RetGenと呼ばれる手法により,高い性能が得られることを示す。
モデル出力は、タスクを完了するために必要なものを示し、より関連する知識を取得するための情報的コンテキストを提供する。
Iter-RetGenプロセスは、すべての知識を全体として取得し、構造的な制約なしに生成時の柔軟性をほとんど保持します。
論文 参考訳(メタデータ) (2023-05-24T16:17:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。