論文の概要: Can GRPO Help LLMs Transcend Their Pretraining Origin?
- arxiv url: http://arxiv.org/abs/2510.15990v1
- Date: Tue, 14 Oct 2025 00:37:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 00:56:38.753683
- Title: Can GRPO Help LLMs Transcend Their Pretraining Origin?
- Title(参考訳): GRPOはLLMの原点を越えられるか?
- Authors: Kangqi Ni, Zhen Tan, Zijie Liu, Pingzhi Li, Tianlong Chen,
- Abstract要約: グループ相対政策最適化は、大規模言語モデル(LLM)の推論能力を高めるための主要なアプローチである
広く採用されているにもかかわらず、GRPOの利益はしばしば矛盾している。
GRPOはどの条件で推論を改善し、アウト・オブ・ディストリビューション(OOD)を一般化するのか?
まず、GRPOは基本モデルの分布に縛られ、完全に新しい解を見つけることができない保守的な再重み付けスキームであることを理論的に証明する。
- 参考スコア(独自算出の注目度): 42.200901132315636
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement Learning with Verifiable Rewards (RLVR), primarily driven by the Group Relative Policy Optimization (GRPO) algorithm, is a leading approach for enhancing the reasoning abilities of Large Language Models (LLMs). Despite its wide adoption, GRPO's gains are often inconsistent; for instance, a model may show significant improvement in one reasoning domain, like mathematics, yet remain stagnant in another, such as medicine. This inconsistency raises a critical question: under what conditions does GRPO improve reasoning and generalize out-of-distribution (OOD)? We investigate this from a data distribution perspective. We first prove theoretically that GRPO is a conservative reweighting scheme, bounded by the base model's distribution and thus unable to discover completely novel solutions. We further validate this in carefully designed controlled studies by training transformers from scratch, evaluating generalization across reasoning depth, input length, token representation, and compositionality. Our results provide a principled explanation for GRPO's boundaries: OOD improvement emerges only when the target task aligns with the model's pretrained biases, while gains on in-distribution (ID) tasks diminish as performance saturates. This reframes GRPO not as a universal reasoning enhancer but as a tool that sharpens pretraining biases. Our findings motivate future development of algorithms that can expand a model's capabilities beyond its pretraining origin.
- Abstract(参考訳): RLVR(Reinforcement Learning with Verifiable Rewards)は、主にGRPO(Group Relative Policy Optimization)アルゴリズムによって推進される、大規模言語モデル(LLM)の推論能力を高めるための主要なアプローチである。
GRPOが広く採用されているにもかかわらず、GRPOの利益はしばしば矛盾している。例えば、ある推論領域(数学など)においてモデルが大きく改善されているが、医学などの分野では停滞している。
GRPOはどの条件で推論を改善し、アウト・オブ・ディストリビューション(OOD)を一般化するのか?
データ分散の観点からこれを考察する。
まず、GRPOは基本モデルの分布に縛られ、完全に新しい解を見つけることができない保守的な再重み付けスキームであることを理論的に証明する。
さらに、スクラッチからトランスフォーマーを訓練し、推論深度、入力長、トークン表現、構成性にまたがる一般化を評価することで、慎重に設計された制御研究においてこれを検証する。
OODの改善は、目標タスクがモデルの事前訓練されたバイアスに一致したときのみ発生し、一方、性能が飽和するにつれて、非分配(ID)タスクの利得が減少する。
これはGRPOを普遍的な推論エンハンサーではなく、事前学習バイアスを鋭くするツールとして再設定する。
我々の発見は、モデルの性能を事前学習の原点を超えて拡張できるアルゴリズムの今後の発展を動機付けている。
関連論文リスト
- Uncalibrated Reasoning: GRPO Induces Overconfidence for Stochastic Outcomes [55.2480439325792]
強化学習(Reinforcement Learning, RL)は、数学のような検証可能な決定論的領域において、言語モデルの精度を向上させるために著しく有効であることが証明されている。
本稿では,現在のRL法が,科学的実験のような検証可能な領域における言語モデルの最適化にも有効かどうかを検討する。
論文 参考訳(メタデータ) (2025-08-15T20:50:53Z) - GRPO-CARE: Consistency-Aware Reinforcement Learning for Multimodal Reasoning [53.894789613838654]
我々は、複雑な実世界のビデオにバランスの取れた知覚と推論を必要とするベンチマークであるSEED-Bench-R1を紹介する。
SEED-Bench-R1を用いて、標準GRPOは解の精度を向上する一方で、推論ステップと解の論理的コヒーレンスを57.9%の一貫性で減少させる。
応答の正しさと推論コヒーレンスの両方を明示的な監督なしに最適化する整合性を考慮したRLフレームワークGRPO-CAREを提案する。
論文 参考訳(メタデータ) (2025-06-19T08:49:13Z) - Rewarding the Unlikely: Lifting GRPO Beyond Distribution Sharpening [36.81125165911328]
強化学習は、言語モデルの推論能力を改善する主要な要因として現れています。
本稿では,現在の強化学習アルゴリズムが,すでに解いている問題に関するベースモデルの分布を単に研ぎ澄ましているだけかどうかを考察する。
差分報酬はランクバイアスを緩和し、合成定理と実定理の両方の証明設定において、多種多様な$N$でpass@N$を改善することを示す。
論文 参考訳(メタデータ) (2025-06-03T01:15:15Z) - On the Effect of Negative Gradient in Group Relative Deep Reinforcement Optimization [52.76330545825083]
強化学習(RL)は,大規模言語モデル(LLM)の推論能力の向上に人気がある。
従来認識されていなかった Lazy Likelihood Displacement (LLD) 現象を同定し, トレーニング中に正答率がわずかに増加するか, あるいは低下する可能性が示唆された。
従来のDPOベースのアプローチとは異なり、NTHRはGRPOのグループベースの構造を利用して、適切な応答をアンカーとして利用し、重要なトークンを識別する。
論文 参考訳(メタデータ) (2025-05-24T18:58:51Z) - Stepwise Guided Policy Optimization: Coloring your Incorrect Reasoning in GRPO [22.00487909203855]
グループ相対ポリシー最適化は、グループ内のすべてのレスポンスが正しくない場合にポリシーを更新できない。
この制限は、人工知能と人間の知性の間に重要なギャップを浮き彫りにする。
グループ内に応答の多様性を取り入れることで、全負のサンプル問題を緩和するシンプルなフレームワークを導入する。
論文 参考訳(メタデータ) (2025-05-16T18:02:05Z) - A Minimalist Approach to LLM Reasoning: from Rejection Sampling to Reinforce [68.99924691391048]
我々はGRPOを強化的なアルゴリズムの観点から再検討し、そのコアコンポーネントを分析する。
単純な拒絶サンプリングベースラインであるRAFTは,GRPOやPPOよりも競争性能が高いことがわかった。
この知見に触発されて、完全に正しくないサンプルと完全に正しいサンプルの両方をフィルタリングするポリシー勾配の最小限の拡張であるReinforce-Rejを提案する。
論文 参考訳(メタデータ) (2025-04-15T16:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。