論文の概要: AMStraMGRAM: Adaptive Multi-cutoff Strategy Modification for ANaGRAM
- arxiv url: http://arxiv.org/abs/2510.15998v1
- Date: Tue, 14 Oct 2025 09:10:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 00:56:38.762974
- Title: AMStraMGRAM: Adaptive Multi-cutoff Strategy Modification for ANaGRAM
- Title(参考訳): AMStraMGRAM:ANaGRAMの適応マルチカット戦略修正
- Authors: Nilo Schwencke, Cyriaque Rousselot, Alena Shilova, Cyril Furtlehner,
- Abstract要約: ANaGRAMで最適化されたPINNのトレーニングダイナミクスを解析する。
本稿では,ANaGRAMの性能をさらに向上するマルチカット適応戦略を提案する。
- 参考スコア(独自算出の注目度): 6.515592049126884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works have shown that natural gradient methods can significantly outperform standard optimizers when training physics-informed neural networks (PINNs). In this paper, we analyze the training dynamics of PINNs optimized with ANaGRAM, a natural-gradient-inspired approach employing singular value decomposition with cutoff regularization. Building on this analysis, we propose a multi-cutoff adaptation strategy that further enhances ANaGRAM's performance. Experiments on benchmark PDEs validate the effectiveness of our method, which allows to reach machine precision on some experiments. To provide theoretical grounding, we develop a framework based on spectral theory that explains the necessity of regularization and extend previous shown connections with Green's functions theory.
- Abstract(参考訳): 近年の研究では、物理インフォームドニューラルネットワーク(PINN)のトレーニングにおいて、自然勾配法が標準オプティマイザを著しく上回っていることが示されている。
本稿では,ANaGRAMで最適化されたPINNのトレーニングダイナミクスを解析する。
この分析に基づいて、ANaGRAMの性能をさらに向上させるマルチカット適応戦略を提案する。
ベンチマークPDEの実験では,いくつかの実験で機械の精度に到達することができる手法の有効性が検証された。
理論的な基礎を与えるため、スペクトル理論に基づくフレームワークを開発し、正規化の必要性を説明し、グリーン関数理論との先行した接続を延長する。
関連論文リスト
- Implicit Reward as the Bridge: A Unified View of SFT and DPO Connections [65.36449542323277]
本稿では,Large Language Model (LLM) 後の学習において,SFT(Supervised Fine-Tuning) と優先学習を統合した理論フレームワークを提案する。
そこで本研究では,学習率の簡易かつ効果的な削減手法を提案する。
論文 参考訳(メタデータ) (2025-06-15T05:42:29Z) - Solving Nonlinear PDEs with Sparse Radial Basis Function Networks [0.0]
本稿では,スパルスラジアル基底関数(RBF)ネットワークを用いた非線形PDEの解法を提案する。
この研究は、従来のRBFコロケーション法における長年にわたる課題と、物理インフォームドニューラルネットワーク(PINN)とガウス過程(GP)アプローチの限界によって動機付けられている。
論文 参考訳(メタデータ) (2025-05-12T17:12:53Z) - Gradient Alignment in Physics-informed Neural Networks: A Second-Order Optimization Perspective [12.91773326430686]
損失項間の方向性衝突に対処するための理論的および実践的なアプローチを提案する。
これらの矛盾が一階法にどのように制限されているかを示し、二階最適化が自然にそれらを解決することを示す。
我々は,最近提案された準ニュートン法であるSOAPが,ヘッセンのプレコンディショナーを効率的に近似していることを証明する。
論文 参考訳(メタデータ) (2025-02-02T00:21:45Z) - Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-Constraint [56.74058752955209]
本稿では,RLHFによる強化学習を用いた生成モデルのアライメント過程について検討する。
まず、オフラインPPOやオフラインDPOのような既存の一般的な手法の主な課題を、環境の戦略的探索に欠如していると認識する。
有限サンプル理論保証を用いた効率的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-18T18:58:42Z) - Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGM) は、ロボット工学やコンピュータグラフィックスにおける連続的な制御タスクに広く採用されている。
近年の研究では、長期強化学習問題に適用した場合、モデルベースRP PGMはカオス的かつ非滑らかな最適化環境を経験する可能性があることが示されている。
本稿では,長期モデルアンロールによる爆発的分散問題を緩和するスペクトル正規化法を提案する。
論文 参考訳(メタデータ) (2023-10-30T18:43:21Z) - Provable Reward-Agnostic Preference-Based Reinforcement Learning [61.39541986848391]
PbRL(Preference-based Reinforcement Learning)は、RLエージェントが、軌道上のペアワイドな嗜好に基づくフィードバックを用いてタスクを最適化することを学ぶパラダイムである。
本稿では,隠れた報酬関数の正確な学習を可能にする探索軌道を求める理論的報酬非依存PbRLフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-29T15:00:09Z) - A theoretical and empirical study of new adaptive algorithms with
additional momentum steps and shifted updates for stochastic non-convex
optimization [0.0]
適応最適化アルゴリズムは学習分野の鍵となる柱を表現していると考えられる。
本稿では,異なる非滑らかな目的問題に対する適応運動量法を提案する。
論文 参考訳(メタデータ) (2021-10-16T09:47:57Z) - A Differential Game Theoretic Neural Optimizer for Training Residual
Networks [29.82841891919951]
本稿では、残差接続と畳み込み層の両方を受け入れる一般化微分動的プログラミング(DDP)ニューラルアーキテクチャを提案する。
得られた最適制御表現は、トレーニング残余ネットワークを、状態拡張システム上での協調的軌道最適化と解釈できるゲーム論的視点を許容する。
論文 参考訳(メタデータ) (2020-07-17T10:19:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。