論文の概要: Quantum Synthetic Data Generation for Industrial Bioprocess Monitoring
- arxiv url: http://arxiv.org/abs/2510.17688v1
- Date: Mon, 20 Oct 2025 16:04:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 00:56:39.51484
- Title: Quantum Synthetic Data Generation for Industrial Bioprocess Monitoring
- Title(参考訳): 産業用バイオプロセスモニタリングのための量子合成データ生成
- Authors: Shawn M. Gibford, Mohammad Reza Boskabadi, Christopher J. Savoie, Seyed Soheil Mansouri,
- Abstract要約: バイオマニュファクチャリングにおけるデータの不足とスパーシリティは、正確なモデル開発、プロセス監視、最適化に課題をもたらす。
本稿では,QWGAN-GP(Quantum Wasserstein Generative Adrial Network with Gradient Penalty)を用いて,産業関連プロセスの時系列データを生成することを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Data scarcity and sparsity in bio-manufacturing poses challenges for accurate model development, process monitoring, and optimization. We aim to replicate and capture the complex dynamics of industrial bioprocesses by proposing the use of a Quantum Wasserstein Generative Adversarial Network with Gradient Penalty (QWGAN-GP) to generate synthetic time series data for industrially relevant processes. The generator within our GAN is comprised of a Parameterized Quantum Circuit (PQC). This methodology offers potential advantages in process monitoring, modeling, forecasting, and optimization, enabling more efficient bioprocess management by reducing the dependence on scarce experimental data. Our results demonstrate acceptable performance in capturing the temporal dynamics of real bioprocess data. We focus on Optical Density, a key measurement for Dry Biomass estimation. The data generated showed high fidelity to the actual historical experimental data. This intersection of quantum computing and machine learning has opened new frontiers in data analysis and generation, particularly in computationally intensive fields, for use cases such as increasing prediction accuracy for soft sensor design or for use in predictive control.
- Abstract(参考訳): バイオマニュファクチャリングにおけるデータの不足とスパーシリティは、正確なモデル開発、プロセス監視、最適化に課題をもたらす。
本稿では, 産業関連プロセスの合成時系列データを生成するために, グラディエントペナルティ(QWGAN-GP)を用いた量子ワッサーシュタイン生成適応ネットワーク(Quantum Wasserstein Generative Adversarial Network)を用いて, 産業バイオプロセスの複雑なダイナミクスを再現し, 捉えることを目的とする。
GAN内のジェネレータはパラメータ化量子回路(PQC)で構成されています。
この手法は、プロセスモニタリング、モデリング、予測、最適化において潜在的な利点を提供し、実験データ不足への依存を減らすことにより、より効率的なバイオプロセス管理を可能にする。
本結果は,実バイオプロセスデータの時間的ダイナミクスを捉える上で,許容できる性能を示した。
我々は, ドライバイオマス推定の鍵となる光学密度に着目した。
生成されたデータは、実際の歴史的な実験データに高い忠実性を示した。
量子コンピューティングと機械学習の交わりは、特に計算集約的な分野において、ソフトセンサー設計や予測制御における予測精度の向上といったユースケースにおいて、データ分析と生成の新たなフロンティアを開放した。
関連論文リスト
- Improving the Generation and Evaluation of Synthetic Data for Downstream Medical Causal Inference [89.5628648718851]
因果推論は医療介入の開発と評価に不可欠である。
現実の医療データセットは、規制障壁のためアクセスが難しいことが多い。
本稿では,医学における治療効果分析のための新しい合成データ生成法STEAMを提案する。
論文 参考訳(メタデータ) (2025-10-21T16:16:00Z) - Valid Inference with Imperfect Synthetic Data [39.10587411316875]
モーメントの一般化法に基づく新しい推定器を提案する。
合成データのモーメント残差と実データのモーメント間の相互作用は、対象パラメータの推定を大幅に改善できることがわかった。
論文 参考訳(メタデータ) (2025-08-08T18:32:52Z) - PIGPVAE: Physics-Informed Gaussian Process Variational Autoencoders [42.8983261737774]
本稿では,物理制約を組み込んでデータから学習し,性能を向上させる新しい生成モデルを提案する。
生成過程に物理モデルを組み込むことで、VAEアーキテクチャを拡張し、基礎となるダイナミクスをより効果的に捉えることができる。
我々はPIGPVAEが観測された分布を超えて現実的なサンプルを作成できることを示した。
論文 参考訳(メタデータ) (2025-05-25T21:12:01Z) - Synthetic Data Generation by Supervised Neural Gas Network for Physiological Emotion Recognition Data [0.0]
本研究では,SNG(Supervised Neural Gas)ネットワークを用いた合成データ生成の革新的アプローチを提案する。
SNGは入力データを効率的に処理し、元のデータ分布を忠実に模倣する合成インスタンスを作成する。
論文 参考訳(メタデータ) (2025-01-19T15:34:05Z) - Sparse Attention-driven Quality Prediction for Production Process Optimization in Digital Twins [53.70191138561039]
データ駆動方式で運用ロジックを符号化することで,生産ラインのディジタルツインをデプロイすることを提案する。
我々は,自己注意型時間畳み込みニューラルネットワークに基づく生産プロセスの品質予測モデルを採用する。
本手法は,本手法により,仮想及び実生産ライン間のシームレスな統合を促進できることを示す。
論文 参考訳(メタデータ) (2024-05-20T09:28:23Z) - Integration of Domain Expert-Centric Ontology Design into the CRISP-DM for Cyber-Physical Production Systems [45.05372822216111]
機械学習(ML)とデータマイニング(DM)の手法は、収集されたデータから複雑で隠れたパターンを抽出する上で有望であることが証明されている。
しかし、このようなデータ駆動プロジェクトは、通常、CRISPDM(Cross-Industry Standard Process for Data Mining)で実行され、データの理解と準備に要する時間の不均等さのために失敗することが多い。
このコントリビューションは、データサイエンティストがCPPSの課題に対してより迅速かつ確実に洞察を得ることができるように、統合されたアプローチを提供することを目的としている。
論文 参考訳(メタデータ) (2023-07-21T15:04:00Z) - Efficient selective attention LSTM for well log curve synthesis [0.0]
本稿では,既存のデータを用いて不足データの予測を行う機械学習手法を提案する。
提案手法は,従来のLong Short-Term Memory(LSTM)ニューラルネットワークに自己注意機構を組み込むことで構築する。
実験により,提案手法は従来の曲線合成法と比較して精度が高いことを示した。
論文 参考訳(メタデータ) (2023-07-17T09:35:18Z) - Post-training Model Quantization Using GANs for Synthetic Data
Generation [57.40733249681334]
量子化法における実データを用いたキャリブレーションの代用として合成データを用いた場合について検討する。
本稿では,StyleGAN2-ADAが生成したデータと事前学習したDiStyleGANを用いて定量化したモデルの性能と,実データを用いた量子化とフラクタル画像に基づく代替データ生成手法との比較を行った。
論文 参考訳(メタデータ) (2023-05-10T11:10:09Z) - Multi-fidelity Gaussian Process for Biomanufacturing Process Modeling
with Small Data [1.4687789417816917]
本稿では, バイオマニュファクチャリングにおけるプロセスモデリングに, 統計的機械学習アプローチ, 多要素ガウスプロセスを用いることを提案する。
生物生産,バイオリアクターのスケールアップ,細胞間知識伝達における2つの重要な課題を解決するために,多要素ガウス法を適用し,実世界のデータセット上での有効性を実証する。
論文 参考訳(メタデータ) (2022-11-26T06:38:34Z) - Policy Optimization in Bayesian Network Hybrid Models of
Biomanufacturing Processes [3.124775036986647]
バイオマニュファクチャリングプロセスは、綿密な監視と制御を必要とする。
低データ環境における人間レベルの制御を実現するためのモデルベース強化学習フレームワークを開発した。
論文 参考訳(メタデータ) (2021-05-13T20:39:02Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。