論文の概要: POPI: Personalizing LLMs via Optimized Natural Language Preference Inference
- arxiv url: http://arxiv.org/abs/2510.17881v1
- Date: Fri, 17 Oct 2025 23:07:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:12.253299
- Title: POPI: Personalizing LLMs via Optimized Natural Language Preference Inference
- Title(参考訳): POPI: 最適化された自然言語推論によるLLMのパーソナライズ
- Authors: Yizhuo Chen, Xin Liu, Ruijie Wang, Zheng Li, Pei Chen, Changlong Yu, Priyanka Nigam, Meng Jiang, Bing Yin,
- Abstract要約: POPIは、不均一なユーザ信号を簡潔な自然言語要約に変換するための選好推論モデルを導入する一般的なフレームワークである。
これらの要約は、パーソナライズされた応答を生成するために共有生成モデルを必要とする透明でコンパクトで、転送可能なパーソナライズ表現として機能する。
4つのパーソナライズベンチマークによる大規模な実験により、POPIはパーソナライズ精度を常に改善し、コンテキストオーバーヘッドを大きなマージンで低減することを示した。
- 参考スコア(独自算出の注目度): 42.25870704040321
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) achieve strong benchmark performance, yet user experiences remain inconsistent due to diverse preferences in style, tone, and reasoning mode. Nevertheless, existing alignment techniques such as reinforcement learning from human feedback (RLHF) or Direct Preference Optimization (DPO) largely optimize toward population-level averages and overlook individual variation. Naive personalization strategies like per-user fine-tuning are computationally prohibitive, and in-context approaches that prepend raw user signals often suffer from inefficiency and noise. To address these challenges, we propose POPI, a general framework that introduces a preference inference model to distill heterogeneous user signals into concise natural language summaries. These summaries act as transparent, compact, and transferable personalization representations that condition a shared generation model to produce personalized responses. POPI jointly optimizes both preference inference and personalized generation under a unified objective using reinforcement learning, ensuring summaries maximally encode useful preference information. Extensive experiments across four personalization benchmarks demonstrate that POPI consistently improves personalization accuracy while reducing context overhead by a large margin. Moreover, optimized summaries seamlessly transfer to frozen off-the-shelf LLMs, enabling plug-and-play personalization without weight updates.
- Abstract(参考訳): 大規模言語モデル(LLM)は、強力なベンチマークパフォーマンスを実現するが、スタイル、トーン、推論モードの多様さにより、ユーザエクスペリエンスは相容れないままである。
それでも、人間からのフィードバックからの強化学習(RLHF)や直接選好最適化(DPO)といった既存のアライメント手法は、人口レベルの平均に対して大きく最適化され、個人差を見落としている。
ユーザ毎の微調整のようなナイーブなパーソナライゼーション戦略は計算的に禁止されており、生のユーザ信号をプリペイドするコンテキスト内アプローチは、しばしば非効率性とノイズに悩まされる。
これらの課題に対処するため,不均質なユーザ信号を簡潔な自然言語要約に融合する選好推論モデルを導入する汎用フレームワークPOPIを提案する。
これらの要約は、パーソナライズされた応答を生成するために共有生成モデルを必要とする透明でコンパクトで、転送可能なパーソナライズ表現として機能する。
POPIは、強化学習を用いた統一目的下での選好推論とパーソナライズ生成を共同で最適化し、有用な選好情報を最大限にエンコードする。
4つのパーソナライズベンチマークによる大規模な実験により、POPIはパーソナライズ精度を常に改善し、コンテキストオーバーヘッドを大きなマージンで低減することを示した。
さらに、最適化されたサマリーは、重み更新なしでプラグアンドプレイのパーソナライズを可能にするように、凍結した既成のLCMにシームレスに転送する。
関連論文リスト
- What Makes LLMs Effective Sequential Recommenders? A Study on Preference Intensity and Temporal Context [56.590259941275434]
RecPOは、シーケンシャルなレコメンデーションのための優先順位最適化フレームワークである。
これは、推定された嗜好階層と時間信号に基づいて適応的な報酬マージンを利用する。
タイムリーな満足感、コヒーレントな嗜好の維持、変化する状況下での識別の行使など、人間の意思決定の重要な特徴を反映している。
論文 参考訳(メタデータ) (2025-06-02T21:09:29Z) - HyPerAlign: Interpretable Personalized LLM Alignment via Hypothesis Generation [24.67727411391369]
HyPerAlignは、大規模言語モデルに対する解釈可能かつサンプル効率の仮説駆動パーソナライズアプローチである。
我々は2つの異なるパーソナライズタスク、すなわち著者帰属と熟考的アライメントについて実験を行った。
その結果、仮説駆動型パーソナライゼーションの方が好みに基づく微調整法よりも優れていることが示された。
論文 参考訳(メタデータ) (2025-04-29T18:01:46Z) - Leveraging Robust Optimization for LLM Alignment under Distribution Shifts [51.74394601039711]
人間の値に整合した出力を生成するために、大規模言語モデルを操る上で、優先順位アライメント手法はますます重要になっている。
このようなシフトに拘わらず、好みのアライメントを改善する新しい分布対応最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2025-04-08T09:14:38Z) - RosePO: Aligning LLM-based Recommenders with Human Values [38.029251417802044]
我々は、パーソナライズされた選好最適化(RosePO)を円滑にするための一般的なフレームワークを提案する。
RosePOは、トレーニング後の段階において、カスタマイズされた人的価値との整合性が向上する。
実世界の3つのデータセットの評価は,本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-10-16T12:54:34Z) - Unified Preference Optimization: Language Model Alignment Beyond the Preference Frontier [0.5120567378386615]
大規模言語モデル(LLM)の整合化のための統一的アプローチを提案する。
好みと補助目的の単純な分解に基づいて、ユーザとデザイナーの好みを最適化するためにLLMをチューニングできる。
論文 参考訳(メタデータ) (2024-05-28T08:35:48Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
複数の参照モデルを用いた直接選好最適化のための新しいクローズドフォームの定式化を提案する。
得られたアルゴリズムであるMulti-Reference Preference Optimization (MRPO)は、様々な参照モデルからより広範な事前知識を活用する。
MRPOを微調整したLLMは,データ不足や多量性に関わらず,様々な嗜好データにおいてより一般化されていることを示す。
論文 参考訳(メタデータ) (2024-05-26T00:29:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。