論文の概要: Does GenAI Rewrite How We Write? An Empirical Study on Two-Million Preprints
- arxiv url: http://arxiv.org/abs/2510.17882v1
- Date: Sat, 18 Oct 2025 01:37:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:12.25474
- Title: Does GenAI Rewrite How We Write? An Empirical Study on Two-Million Preprints
- Title(参考訳): GenAIはどのように書き直すか? : 2ミリのプレプリントに関する実証的研究
- Authors: Minfeng Qi, Zhongmin Cao, Qin Wang, Ningran Li, Tianqing Zhu,
- Abstract要約: 生成型大規模言語モデル(LLM)は、原稿の書き方を変えることによって、さらなる破壊をもたらす可能性がある。
本稿は、2016年から2025年(115ヶ月)にかけての2100万件以上のプレプリントを4つの主要なリポジトリで大規模に分析することで、このギャップを解消する。
以上の結果から,LSMは提出サイクルと修正サイクルを加速し,言語的複雑性が緩やかに増加し,AI関連トピックが不均等に拡大したことが明らかとなった。
- 参考スコア(独自算出の注目度): 15.070885964897734
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Preprint repositories become central infrastructures for scholarly communication. Their expansion transforms how research is circulated and evaluated before journal publication. Generative large language models (LLMs) introduce a further potential disruption by altering how manuscripts are written. While speculation abounds, systematic evidence of whether and how LLMs reshape scientific publishing remains limited. This paper addresses the gap through a large-scale analysis of more than 2.1 million preprints spanning 2016--2025 (115 months) across four major repositories (i.e., arXiv, bioRxiv, medRxiv, SocArXiv). We introduce a multi-level analytical framework that integrates interrupted time-series models, collaboration and productivity metrics, linguistic profiling, and topic modeling to assess changes in volume, authorship, style, and disciplinary orientation. Our findings reveal that LLMs have accelerated submission and revision cycles, modestly increased linguistic complexity, and disproportionately expanded AI-related topics, while computationally intensive fields benefit more than others. These results show that LLMs act less as universal disruptors than as selective catalysts, amplifying existing strengths and widening disciplinary divides. By documenting these dynamics, the paper provides the first empirical foundation for evaluating the influence of generative AI on academic publishing and highlights the need for governance frameworks that preserve trust, fairness, and accountability in an AI-enabled research ecosystem.
- Abstract(参考訳): プレプリントリポジトリは学術的なコミュニケーションのための中心的な基盤となる。
彼らの拡大は、学術誌の発行前に研究が流通し評価される方法を変える。
生成型大規模言語モデル(LLM)は、原稿の書き方を変えることによって、さらなる破壊をもたらす可能性がある。
憶測が広まっている一方で、LLMが科学出版をどう作り直すかという体系的な証拠は依然として限られている。
本稿は,2016~2025年の2100万件以上のプレプリント(arXiv, bioRxiv, medRxiv, SocArXiv)の大規模分析を通じて,4つの主要なリポジトリ(arXiv, bioRxiv, medRxiv, SocArXiv)にまたがるギャップを解消する。
本稿では、中断した時系列モデル、コラボレーションと生産性の指標、言語プロファイリング、トピックモデリングを統合して、ボリューム、著者、スタイル、ディシプリナオリエンテーションの変化を評価する多段階分析フレームワークを提案する。
以上の結果から,LLMは提出と修正のサイクルを加速し,言語的複雑性が緩やかに増加し,AI関連のトピックが不均等に拡大したのに対し,計算集約的な分野は他の分野よりも恩恵を受けていることが明らかとなった。
これらの結果から, LLMは選択触媒よりも普遍的破壊剤としての役割が低く, 既存の強度を増幅し, ディシプリナ分割を拡大することが示唆された。
論文は、これらのダイナミクスを文書化することによって、生成的AIが学術出版に与える影響を評価するための最初の実証的な基盤を提供し、AI対応研究エコシステムにおける信頼、公正、説明責任を維持するためのガバナンスフレームワークの必要性を強調している。
関連論文リスト
- Let's Use ChatGPT To Write Our Paper! Benchmarking LLMs To Write the Introduction of a Research Paper [64.50822834679101]
SciIGは、タイトル、抽象、および関連する作品からコヒーレントな紹介を生成するLLMの能力を評価するタスクである。
オープンソース (DeepSeek-v3, Gemma-3-12B, LLaMA 4-Maverick, MistralAI Small 3.1) およびクローズドソース GPT-4o システムを含む5つの最先端モデルを評価する。
結果は、特に意味的類似性と忠実性において、ほとんどのメトリクスにおいて、LLaMA-4 Maverickの優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2025-08-19T21:11:11Z) - Computational Approaches to Understanding Large Language Model Impact on Writing and Information Ecosystems [10.503784446147122]
大規模言語モデル(LLM)は、私たちがどのように書き、コミュニケーションし、作成するかを変える大きな可能性を示しています。
この論文は、個人や機関がこの新興技術にどのように適応し、関与しているかを調べます。
論文 参考訳(メタデータ) (2025-06-20T20:15:09Z) - XtraGPT: Context-Aware and Controllable Academic Paper Revision [43.263488839387584]
本稿では,基準誘導型意図アライメントと文脈認識モデリングを中心とした学術論文改訂のための人間-AI協調フレームワークを提案する。
XtraGPTは,コンテクスト対応,命令誘導型書き込み支援のためのオープンソースのLLMスイートである。
論文 参考訳(メタデータ) (2025-05-16T15:02:19Z) - Divergent LLM Adoption and Heterogeneous Convergence Paths in Research Writing [0.8046044493355781]
LLM(Large Language Models)は、コンテンツ作成と学術的執筆を変革する。
本研究は,AIによる生成リビジョンが研究原稿に与える影響について検討する。
論文 参考訳(メタデータ) (2025-04-18T11:09:16Z) - A Survey on Post-training of Large Language Models [185.51013463503946]
大規模言語モデル(LLM)は、自然言語処理を根本的に変革し、会話システムから科学的探索まで、さまざまな領域で欠かせないものにしている。
これらの課題は、制限された推論能力、倫理的不確実性、最適なドメイン固有のパフォーマンスといった欠点に対処するために、先進的な訓練後言語モデル(PoLM)を必要とする。
本稿では,タスク固有の精度を向上するファインチューニング,倫理的コヒーレンスと人間の嗜好との整合性を保証するアライメント,報酬設計の課題によらず多段階の推論を進める推論,統合と適応の5つのパラダイムを体系的に追跡したPoLMの総合的な調査について述べる。
論文 参考訳(メタデータ) (2025-03-08T05:41:42Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgentは、新しい作品のアイデアと運用のためのAIベースのシステムである。
ResearchAgentは、新しい問題を自動で定義し、手法と設計実験を提案し、繰り返し修正する。
我々は、複数の分野にわたる科学論文に関するResearchAgentを実験的に検証した。
論文 参考訳(メタデータ) (2024-04-11T13:36:29Z) - Mapping the Increasing Use of LLMs in Scientific Papers [99.67983375899719]
2020年1月から2024年2月にかけて、arXiv、bioRxiv、Natureのポートフォリオジャーナルで950,965の論文をまとめて、体系的で大規模な分析を行った。
計算機科学の論文では, LLMの使用が着実に増加し, 最大, 最速の成長が観察された。
論文 参考訳(メタデータ) (2024-04-01T17:45:15Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。