論文の概要: DynaQuery: A Self-Adapting Framework for Querying Structured and Multimodal Data
- arxiv url: http://arxiv.org/abs/2510.18029v1
- Date: Mon, 20 Oct 2025 19:02:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:12.527248
- Title: DynaQuery: A Self-Adapting Framework for Querying Structured and Multimodal Data
- Title(参考訳): DynaQuery: 構造化データとマルチモーダルデータの問合せのための自己適応フレームワーク
- Authors: Aymane Hassini,
- Abstract要約: 構造化されていないデータを問合せするための統合された自己適応フレームワークであるDynaQueryを紹介します。
DynaQueryの中心にIntrospection and Linking Engine (SILE)がある。これは、スキーマリンクをファーストクラスのクエリ計画フェーズに高める新しいシステムプリミティブである。
我々の研究は、堅牢で適応性があり、予測可能である自然言語データベースインタフェースを開発するための検証済みのアーキテクチャ基盤を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of Large Language Models (LLMs) has accelerated the long-standing goal of enabling natural language querying over complex, hybrid databases. Yet, this ambition exposes a dual challenge: reasoning jointly over structured, multi-relational schemas and the semantic content of linked unstructured assets. To overcome this, we present DynaQuery - a unified, self-adapting framework that serves as a practical blueprint for next-generation "Unbound Databases." At the heart of DynaQuery lies the Schema Introspection and Linking Engine (SILE), a novel systems primitive that elevates schema linking to a first-class query planning phase. We conduct a rigorous, multi-benchmark empirical evaluation of this structure-aware architecture against the prevalent unstructured Retrieval-Augmented Generation (RAG) paradigm. Our results demonstrate that the unstructured retrieval paradigm is architecturally susceptible to catastrophic contextual failures, such as SCHEMA_HALLUCINATION, leading to unreliable query generation. In contrast, our SILE-based design establishes a substantially more robust foundation, nearly eliminating this failure mode. Moreover, end-to-end validation on a complex, newly curated benchmark uncovers a key generalization principle: the transition from pure schema-awareness to holistic semantics-awareness. Taken together, our findings provide a validated architectural basis for developing natural language database interfaces that are robust, adaptable, and predictably consistent.
- Abstract(参考訳): 大規模言語モデル(LLM)の台頭は、複雑なハイブリッドデータベース上で自然言語クエリを可能にするという長年の目標を加速した。
しかし、この野心は、構造化されたマルチリレーショナルスキーマとリンクされた非構造化資産のセマンティックコンテンツについて、共同で推論するという2つの課題を露呈している。
これを解決するために、次世代の"Unbound Databases"の実用的な青写真として機能する、統合された自己適応フレームワークであるDynaQueryを紹介します。
DynaQueryの中心にはSchema Introspection and Linking Engine (SILE)がある。
我々は、この構造認識アーキテクチャの厳密で多面的な実証的な評価を、一般的な非構造的再帰的生成(RAG)パラダイムに対して実施する。
この結果から,SCHEMA_HALLUCINATIONなどの破滅的なコンテキスト障害に,非構造的検索パラダイムがアーキテクチャ的に影響を受け,信頼性の低いクエリ生成につながることが示唆された。
対照的に、SILEベースの設計は、より堅牢な基盤を確立し、この障害モードをほぼ排除しています。
さらに、複雑な、新しくキュレートされたベンチマークにおけるエンドツーエンドの検証は、純粋なスキーマ認識から全体論的セマンティック認識への移行という、重要な一般化原則を明らかにする。
まとめると、我々の発見は、堅牢で適応性があり、予測可能な一貫性のある自然言語データベースインターフェースを開発するための、検証済みのアーキテクチャ基盤を提供する。
関連論文リスト
- Structure-R1: Dynamically Leveraging Structural Knowledge in LLM Reasoning through Reinforcement Learning [29.722512436773638]
本稿では,検索したコンテンツを推論に最適化した構造化表現に変換するフレームワークであるtextscStructure-R1を提案する。
textscStructure-R1は、7Bスケールのバックボーンモデルとの競合性能を一貫して達成していることを示す。
我々の理論的分析は,情報密度と文脈的明瞭度を向上させることによって,構造化表現が推論をいかに促進するかを示す。
論文 参考訳(メタデータ) (2025-10-16T23:19:28Z) - CIR-CoT: Towards Interpretable Composed Image Retrieval via End-to-End Chain-of-Thought Reasoning [93.05917922306196]
Composed Image Retrieval (CIR) は、参照画像と修正テキストから対象画像を見つけることを目的としている。
CIR-CoTは、明示的なChain-of-Thought (CoT)推論を統合するために設計された最初のエンドツーエンド検索指向MLLMである。
論文 参考訳(メタデータ) (2025-10-09T09:41:45Z) - CoT Referring: Improving Referring Expression Tasks with Grounded Reasoning [67.18702329644526]
CoT Referringは、構造化されたチェーン・オブ・シークレット・トレーニングデータ構造を通じて、モデル推論をモダリティにわたって強化する。
トレーニングデータを再構築して、新たな出力フォームを実行し、既存のデータセットに新たなアノテーションを提供します。
また、検出とセグメント化機能を統合MLLMフレームワークに統合し、新しい適応重み付き損失で学習して性能を最適化する。
論文 参考訳(メタデータ) (2025-10-03T08:50:21Z) - Effects of structure on reasoning in instance-level Self-Discover [0.0]
本稿では、Self-Discoverフレームワークのインスタンスレベルの適応であるiSelf-Discoverを紹介し、それを用いて動的に生成された構造化推論と非構造化推論との比較を行う。
最先端のオープンソースモデルを用いた多種多様なベンチマークによる実証的評価は、非構造化推論に対する一貫した優位性を支持している。
論文 参考訳(メタデータ) (2025-07-04T07:28:42Z) - eSapiens: A Real-World NLP Framework for Multimodal Document Understanding and Enterprise Knowledge Processing [6.450269621190948]
企業環境での質問応答システムeSapiensを紹介する。
eSapiensは、二重モジュールアーキテクチャを介して構造化データベースと非構造化コーパスをブリッジする。
我々は、RAGTruthベンチマークでeSapiensを評価し、完全性、幻覚、文脈利用といった重要な側面における性能を分析した。
論文 参考訳(メタデータ) (2025-06-20T06:07:20Z) - Relational Deep Learning: Challenges, Foundations and Next-Generation Architectures [50.46688111973999]
グラフ機械学習は、任意のグラフ構造化データで学習するモデルの能力を大幅に向上させた。
従来の工学的特徴を伴わない'関係エンティティグラフ'のエンドツーエンド表現を可能にする新しい青写真を提案する。
本稿では、大規模マルチテーブル統合や、時間力学と異種データのモデリングの複雑さなど、重要な課題について論じる。
論文 参考訳(メタデータ) (2025-06-19T23:51:38Z) - Large Language Models are Good Relational Learners [55.40941576497973]
本稿では,グラフニューラルネットワーク(GNN)に基づくエンコーダを用いて,大規模言語モデル(LLM)のための構造化リレーショナルプロンプトを生成する新しいアーキテクチャであるRel-LLMを紹介する。
従来のテキストベースのシリアライズ手法とは異なり,本手法はデータベース固有の関係構造を保ちながら,LLMが複雑なエンティティ関係を処理・推論することを可能にする。
論文 参考訳(メタデータ) (2025-06-06T04:07:55Z) - Simplifying Data Integration: SLM-Driven Systems for Unified Semantic Queries Across Heterogeneous Databases [0.0]
本稿では,Small Language Model(SLM)をベースとした,軽量な検索・拡張生成(RAG)とセマンティック・アウェアなデータ構造化の進歩を相乗化するシステムを提案する。
SLMを用いた構造化データ抽出にMiniRAGのセマンティック・アウェア・ヘテロジニアス・グラフインデックスとトポロジ・エンハンス・検索を統合し,従来の手法の限界に対処する。
実験結果は精度と効率性において優れた性能を示し、教師なし評価指標としてのセマンティックエントロピーの導入はモデルの不確実性に対する堅牢な洞察を提供する。
論文 参考訳(メタデータ) (2025-04-08T03:28:03Z) - CART: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
クロスモーダル検索は、異なるモーダルデータの相互作用を通じて、クエリと意味的に関連するインスタンスを検索することを目的としている。
従来のソリューションでは、クエリと候補の間のスコアを明示的に計算するために、シングルトウワーまたはデュアルトウワーのフレームワークを使用している。
粗大なセマンティックモデリングに基づく生成的クロスモーダル検索フレームワーク(CART)を提案する。
論文 参考訳(メタデータ) (2024-06-25T12:47:04Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。