論文の概要: LAND: Lung and Nodule Diffusion for 3D Chest CT Synthesis with Anatomical Guidance
- arxiv url: http://arxiv.org/abs/2510.18446v1
- Date: Tue, 21 Oct 2025 09:20:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:13.234492
- Title: LAND: Lung and Nodule Diffusion for 3D Chest CT Synthesis with Anatomical Guidance
- Title(参考訳): 解剖学的誘導による3次元胸部CT合成のための肺・結節拡散法
- Authors: Anna Oliveras, Roger Marí, Rafael Redondo, Oriol Guardià, Ana Tost, Bhalaji Nagarajan, Carolina Migliorelli, Vicent Ribas, Petia Radeva,
- Abstract要約: この方法は1mmの等方分解能で256x256x256の画像を1つの中距離GPUで合成する。
コンディショニングマスクは肺と結節領域を規定し、出力された解剖学的特徴の正確な制御を可能にする。
- 参考スコア(独自算出の注目度): 11.420298943913075
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work introduces a new latent diffusion model to generate high-quality 3D chest CT scans conditioned on 3D anatomical masks. The method synthesizes volumetric images of size 256x256x256 at 1 mm isotropic resolution using a single mid-range GPU, significantly lowering the computational cost compared to existing approaches. The conditioning masks delineate lung and nodule regions, enabling precise control over the output anatomical features. Experimental results demonstrate that conditioning solely on nodule masks leads to anatomically incorrect outputs, highlighting the importance of incorporating global lung structure for accurate conditional synthesis. The proposed approach supports the generation of diverse CT volumes with and without lung nodules of varying attributes, providing a valuable tool for training AI models or healthcare professionals.
- Abstract(参考訳): 本研究は,3次元解剖学的マスクに固定された高品質な3次元胸部CT画像を生成するために,新しい潜伏拡散モデルを導入する。
1mm等方分解能で256x256x256の体積像を1mmの中間範囲GPUで合成し,既存の手法と比較して計算コストを大幅に削減した。
コンディショニングマスクは肺と結節領域を規定し、出力された解剖学的特徴の正確な制御を可能にする。
実験の結果, 結節マスクのみに条件付けを行うことで, 解剖学的に誤った出力が得られ, 正確な条件合成にグローバル肺構造を組み込むことの重要性が示された。
提案手法は,さまざまな属性の肺結節を伴わない多彩なCTボリュームの生成をサポートし,AIモデルや医療専門家を訓練するための貴重なツールを提供する。
関連論文リスト
- BridgeSplat: Bidirectionally Coupled CT and Non-Rigid Gaussian Splatting for Deformable Intraoperative Surgical Navigation [69.14180476971602]
変形可能な手術ナビゲーションのための新しいアプローチであるBridgeSplatを紹介する。
提案手法は3次元ガウスをCTメッシュにリグし,ガウスパラメータとメッシュ変形の合同最適化を可能にする。
シミュレーションにより,BridgeSplatがブタの内臓手術およびヒト肝臓の合成データに与える影響を実証した。
論文 参考訳(メタデータ) (2025-09-23T01:09:36Z) - High-Fidelity 3D Lung CT Synthesis in ARDS Swine Models Using Score-Based 3D Residual Diffusion Models [13.79974752491887]
急性呼吸不全症候群(ARDS)は、肺炎症と呼吸不全を特徴とする重症疾患であり、死亡率は約40%である。
胸部X線のような従来の画像撮影法は、肺病理の完全な評価において、その効果を制限し、2次元のビューのみを提供する。
本研究では, スコアベース3D残差拡散モデルを用いて2次元X線画像から高忠実度3D肺CTを合成する。
論文 参考訳(メタデータ) (2024-09-26T18:22:34Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
医用画像の領域分割を行うために, SAMを2次元から3次元に変換する新しい適応法を提案する。
本モデルでは, 腎腫瘍, 膵腫瘍, 大腸癌の3つのタスクのうち8.25%, 29.87%, 10.11%の3つのタスクにおいて, ドメイン・オブ・ザ・アーティヴ・メディカル・イメージ・セグメンテーション・モデルより優れ, 肝腫瘍セグメンテーションでも同様の性能が得られる。
論文 参考訳(メタデータ) (2023-06-23T12:09:52Z) - MESAHA-Net: Multi-Encoders based Self-Adaptive Hard Attention Network with Maximum Intensity Projections for Lung Nodule Segmentation in CT Scan [12.442169188451164]
マルチエンコーダをベースとした自己適応型ハードアテンションネットワーク(MESAHA-Net)をCTスキャンの高精度な肺結節分割のための効率的なエンドツーエンドフレームワークとして提案する。
MESAHA-Netは、肺結節のスライス・バイ・スライス2Dセグメンテーションを反復的に行い、各スライス内の結節領域に着目して肺結節の3Dセグメンテーションを生成する。
LIDC-IDRIデータセットは,肺結節セグメンテーションのための最大公用データセットである。
論文 参考訳(メタデータ) (2023-04-04T07:05:15Z) - Validated respiratory drug deposition predictions from 2D and 3D medical
images with statistical shape models and convolutional neural networks [47.187609203210705]
患者固有の沈着モデリングのための自動計算フレームワークを開発し,検証することを目的としている。
2次元胸部X線と3次元CT画像から3次元患者の呼吸動態を生成できる画像処理手法が提案されている。
論文 参考訳(メタデータ) (2023-03-02T07:47:07Z) - Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule
Augmentation and Detection [52.93342510469636]
肺癌早期検診では胸部X線像の肺結節検出が一般的である。
ディープラーニングに基づくコンピュータ支援診断(CAD)システムは、CXRの結節スクリーニングのために放射線科医をサポートすることができる。
このようなデータセットの可用性を損なうため,データ拡張のために肺結節合成法を提案する。
論文 参考訳(メタデータ) (2022-07-19T16:38:48Z) - Unsupervised Contrastive Learning based Transformer for Lung Nodule
Detection [6.693379403133435]
CTによる肺結節の早期発見は,肺癌患者の長期生存と生活の質の向上に不可欠である。
CAD (Computer-Aided Detection/diagnosis) はこの文脈において第2または同時読影器として有用である。
肺結節の正確な検出は、サイズ、位置、および肺結節の出現のばらつきにより、CADシステムや放射線技師にとって依然として困難である。
近年のコンピュータビジョン技術に触発されて,肺結節を同定するための自己教師付き領域ベース3次元トランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2022-04-30T01:19:00Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
マルチタスク型マルチスライス深層学習システム(M3Lung-Sys)を提案する。
COVID-19とHealthy, H1N1, CAPとの鑑別に加えて, M3 Lung-Sysも関連病変の部位を特定できる。
論文 参考訳(メタデータ) (2020-10-07T06:22:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。