論文の概要: $Δ$t-Mamba3D: A Time-Aware Spatio-Temporal State-Space Model for Breast Cancer Risk Prediction
- arxiv url: http://arxiv.org/abs/2510.19003v1
- Date: Tue, 21 Oct 2025 18:29:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:14.4439
- Title: $Δ$t-Mamba3D: A Time-Aware Spatio-Temporal State-Space Model for Breast Cancer Risk Prediction
- Title(参考訳): $Δ$t-Mamba3D:乳癌リスク予測のための時空間時空間空間モデル
- Authors: Zhengbo Zhou, Dooman Arefan, Margarita Zuley, Shandong Wu,
- Abstract要約: 縦断的医用画像解析に適応した新しい状態空間アーキテクチャを開発した。
我々のモデルは、不規則なビジット間隔とリッチ・テンポラルコンテキストを同時に符号化する。
その線形複雑さのおかげで、このモデルはマンモグラフィーの長期および複雑な患者のスクリーニング履歴を効率的に処理することができる。
- 参考スコア(独自算出の注目度): 3.112167541428413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Longitudinal analysis of sequential radiological images is hampered by a fundamental data challenge: how to effectively model a sequence of high-resolution images captured at irregular time intervals. This data structure contains indispensable spatial and temporal cues that current methods fail to fully exploit. Models often compromise by either collapsing spatial information into vectors or applying spatio-temporal models that are computationally inefficient and incompatible with non-uniform time steps. We address this challenge with Time-Aware $\Delta$t-Mamba3D, a novel state-space architecture adapted for longitudinal medical imaging. Our model simultaneously encodes irregular inter-visit intervals and rich spatio-temporal context while remaining computationally efficient. Its core innovation is a continuous-time selective scanning mechanism that explicitly integrates the true time difference between exams into its state transitions. This is complemented by a multi-scale 3D neighborhood fusion module that robustly captures spatio-temporal relationships. In a comprehensive breast cancer risk prediction benchmark using sequential screening mammogram exams, our model shows superior performance, improving the validation c-index by 2-5 percentage points and achieving higher 1-5 year AUC scores compared to established variants of recurrent, transformer, and state-space models. Thanks to its linear complexity, the model can efficiently process long and complex patient screening histories of mammograms, forming a new framework for longitudinal image analysis.
- Abstract(参考訳): 連続した放射線画像の経時的解析は、不規則な時間間隔で撮影された高解像度画像のシーケンスを効果的にモデル化する方法という、基本的なデータ課題によって妨げられている。
このデータ構造は、現在の手法が完全に活用できないような、必要不可欠な空間的および時間的手がかりを含んでいる。
モデルはしばしば、空間情報をベクトルに折り畳むか、計算的に非効率で非一様時間ステップと互換性のない時空間モデルを適用することによって妥協する。
我々は、縦型医療画像に適応した新しい状態空間アーキテクチャであるTime-Aware $\Delta$t-Mamba3Dでこの問題に対処する。
我々のモデルは、計算効率を保ちながら、不規則な視線間隔と豊富な時空間コンテキストを同時に符号化する。
その中心となるイノベーションは、試験間の真の時間差をその状態遷移に明示的に統合する、連続時間選択的走査機構である。
これは、時空間関係をしっかりと捉えたマルチスケールの3D近傍融合モジュールによって補完される。
連続検診による乳がんリスク予測の総合ベンチマークでは, 精度が向上し, c-indexが2~5ポイント向上し, 再発, トランスフォーマー, 状態空間モデルと比較すると, 1~5年AUCスコアが向上した。
その線形複雑性により、このモデルは、マンモグラフィーの長期および複雑な患者のスクリーニング履歴を効率的に処理し、縦断的画像解析のための新しい枠組みを形成することができる。
関連論文リスト
- VISTA: Unsupervised 2D Temporal Dependency Representations for Time Series Anomaly Detection [42.694234312755285]
時系列異常検出(TSAD)は、ラベルのない時系列データの中で稀で潜在的に有害な事象を明らかにするのに不可欠である。
本稿では,これらの課題を克服するために,トレーニング不要で教師なしのTSADアルゴリズムであるVISTAを紹介する。
論文 参考訳(メタデータ) (2025-04-03T11:20:49Z) - Cross Space and Time: A Spatio-Temporal Unitized Model for Traffic Flow Forecasting [16.782154479264126]
時間的要因間の複雑な相互作用により、バックボーン・時間的トラフィックフローを予測することが課題となる。
既存のアプローチでは、これらの次元を分離し、重要な相互依存を無視している。
本稿では,空間的および時間的依存関係の両方をキャプチャする統合フレームワークであるSanonymous-Temporal Unitized Unitized Cell (ASTUC)を紹介する。
論文 参考訳(メタデータ) (2024-11-14T07:34:31Z) - Explainable Spatio-Temporal GCNNs for Irregular Multivariate Time Series: Architecture and Application to ICU Patient Data [7.433698348783128]
XST-CNN(eXG-Temporal Graph Conal Neural Network)は、不均一で不規則なマルチ時系列(MTS)データを処理するための新しいアーキテクチャである。
提案手法は,GCNNパイプラインを利用して時間的・時間的統合パイプライン内での時間的特徴を捉える。
ICU患者のマルチドラッグ抵抗(MDR)を予測するために,実世界の電子健康記録データを用いてXST-CNNを評価した。
論文 参考訳(メタデータ) (2024-11-01T22:53:17Z) - Synthesizing Late-Stage Contrast Enhancement in Breast MRI: A Comprehensive Pipeline Leveraging Temporal Contrast Enhancement Dynamics [0.3499870393443268]
本研究では,後期DCE-MRI画像の初期段階データから合成するためのパイプラインを提案する。
提案手法では, コントラストエージェントの時間的挙動を利用して生成モデルの訓練を指導する, 新たな損失関数である時間強度損失(TI-loss)を導入する。
アノテーション付き領域における拡張パターンを検証するContrast Agent Pattern Score(mathcalCP_s$)と、実際の拡張と生成された拡張の違いを測定するAverage difference in Enhancement(mathcalED$)の2つの指標が画像品質を評価するために提案されている。
論文 参考訳(メタデータ) (2024-09-03T04:31:49Z) - Detecting Anomalies in Dynamic Graphs via Memory enhanced Normality [39.476378833827184]
動的グラフにおける異常検出は、グラフ構造と属性の時間的進化によって大きな課題となる。
時空間記憶強調グラフオートエンコーダ(STRIPE)について紹介する。
STRIPEは、AUCスコアが5.8%改善し、トレーニング時間が4.62倍速く、既存の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2024-03-14T02:26:10Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
野生での歩行認識は、より実践的な問題であり、マルチメディアとコンピュータビジョンのコミュニティの注目を集めています。
本稿では,現実のシーンにおける歩行パターンの効果的な時間的モデリングを実現するために,新しいマルチホップ時間スイッチ方式を提案する。
論文 参考訳(メタデータ) (2022-09-01T10:46:09Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Deep Generative model with Hierarchical Latent Factors for Time Series
Anomaly Detection [40.21502451136054]
本研究は、時系列異常検出のための新しい生成モデルであるDGHLを提示する。
トップダウンの畳み込みネットワークは、新しい階層的な潜在空間を時系列ウィンドウにマッピングし、時間ダイナミクスを利用して情報を効率的にエンコードする。
提案手法は,4つのベンチマーク・データセットにおいて,現在の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-02-15T17:19:44Z) - Multi-Temporal Convolutions for Human Action Recognition in Videos [83.43682368129072]
複数の解像度で抽出できる新しい時間・時間的畳み込みブロックを提案する。
提案するブロックは軽量で,任意の3D-CNNアーキテクチャに統合可能である。
論文 参考訳(メタデータ) (2020-11-08T10:40:26Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。