論文の概要: Cyberattack Detection in Critical Infrastructure and Supply Chains
- arxiv url: http://arxiv.org/abs/2510.19859v1
- Date: Tue, 21 Oct 2025 20:38:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:16.337099
- Title: Cyberattack Detection in Critical Infrastructure and Supply Chains
- Title(参考訳): インフラ・サプライチェーンにおけるサイバー攻撃検出
- Authors: Smita Khapre,
- Abstract要約: 侵入検知システム(IDS)は、サイバー攻撃に対抗するために配備される。
IDSは既知のシグネチャとパターンに基づいて攻撃を効果的に検出し、ゼロデイ攻撃は検出されない。
IDSにおけるこの欠点を克服するために、Dense Neural Network(DNN)とData Augmentationの統合を提案する。
IDSをインテリジェントにし、新たな攻撃に遭遇した場合に高精度で自己学習を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Cyberattack detection in Critical Infrastructure and Supply Chains has become challenging in Industry 4.0. Intrusion Detection Systems (IDS) are deployed to counter the cyberattacks. However, an IDS effectively detects attacks based on the known signatures and patterns, Zero-day attacks go undetected. To overcome this drawback in IDS, the integration of a Dense Neural Network (DNN) with Data Augmentation is proposed. It makes IDS intelligent and enables it to self-learn with high accuracy when a novel attack is encountered. The network flow captures datasets are highly imbalanced same as the real network itself. The Data Augmentation plays a crucial role in balancing the data. The balancing of data is challenging as the minority class is as low as 0.000004\% of the dataset, and the abundant class is higher than 80\% of the dataset. Synthetic Minority Oversampling Technique is used for balancing the data. However, higher accuracies are achieved with balanced test data, lower accuracies are noticeable with the original imbalanced test data suggesting overfitting. A comparison with state-of-the-art research using Synthetic Minority Oversampling Technique with Edited Nearest Neighbor shows the classification of classes remains poor for the original dataset. This suggests highly imbalanced datasets of network flow require a different method of data augmentation.
- Abstract(参考訳): 臨界インフラとサプライチェーンにおけるサイバー攻撃検出は、産業4.0では困難になっている。
侵入検知システム(IDS)は、サイバー攻撃に対抗するために配備される。
しかし、IDSは既知のシグネチャとパターンに基づいて攻撃を効果的に検出し、ゼロデイ攻撃は検出されない。
IDSにおけるこの欠点を克服するために、Dense Neural Network(DNN)とData Augmentationの統合を提案する。
IDSをインテリジェントにし、新たな攻撃に遭遇した場合に高精度で自己学習を可能にする。
ネットワークフローは、データセットをキャプチャするが、実際のネットワーク自身と非常に不均衡である。
Data Augmentationはデータのバランスをとる上で重要な役割を担います。
マイノリティクラスがデータセットの0.000004\%以下であり、豊富なクラスがデータセットの80%以上であるため、データのバランシングは難しい。
データのバランスをとるために、シンセティックマイノリティオーバーサンプリング技術が使用される。
しかしながら、バランスの取れたテストデータにより高い精度が達成され、低い精度は、オーバーフィッティングを示唆する元のバランスの取れていないテストデータと区別できる。
Synthetic Minority Oversampling Technique と Edited Nearest Neighbor を用いた最先端の研究との比較では、クラス分類は元のデータセットでは依然として不十分である。
これは、ネットワークフローの高度に不均衡なデータセットは、異なるデータ拡張方法を必要とすることを示唆している。
関連論文リスト
- Can We Enhance the Quality of Mobile Crowdsensing Data Without Ground Truth? [45.875832406278214]
本稿では,予測と評価に基づく真理発見フレームワークを提案する。
センシングタスクにおいて、低品質のデータを高品質のデータから分離することができる。
これは、識別精度とデータ品質向上の観点から、既存の手法よりも優れています。
論文 参考訳(メタデータ) (2024-05-29T03:16:12Z) - Dealing with Imbalanced Classes in Bot-IoT Dataset [3.7399138244928145]
Bot-IoTデータセットにおけるクラス不均衡問題に対処するために,合成マイノリティオーバーサンプリング技術(SMOTE)を用いたバイナリ分類手法を提案する。
提案手法は,攻撃パケットを検出し,SMOTEアルゴリズムを用いてクラス不均衡問題を克服することを目的としている。
論文 参考訳(メタデータ) (2024-03-27T20:09:59Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
単一フレーム赤外線小ターゲット検出(SIRST)は、乱雑な背景から小さなターゲットを認識することを目的としている。
Transformerの開発に伴い、SIRSTモデルのスケールは常に増大している。
赤外線小ターゲットデータの多彩な多様性により,本アルゴリズムはモデル性能と収束速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-03-08T16:14:54Z) - Advancing DDoS Attack Detection: A Synergistic Approach Using Deep
Residual Neural Networks and Synthetic Oversampling [2.988269372716689]
本稿では,Deep Residual Neural Networks(ResNets)の機能を活用したDDoS攻撃検出の強化手法を提案する。
我々は、良性および悪意のあるデータポイントの表現のバランスをとり、モデルが攻撃を示す複雑なパターンをよりよく識別できるようにする。
実世界のデータセットを用いた実験結果から,従来の手法よりもはるかに優れた99.98%の精度が得られた。
論文 参考訳(メタデータ) (2024-01-06T03:03:52Z) - From Zero to Hero: Detecting Leaked Data through Synthetic Data Injection and Model Querying [10.919336198760808]
分類モデルの学習に使用される漏洩データを検出する新しい手法を提案する。
textscLDSSは、クラス分散の局所的なシフトによって特徴付けられる、少量の合成データを所有者のデータセットに注入する。
これにより、モデルクエリ単独で、リークデータに基づいてトレーニングされたモデルの効果的な識別が可能になる。
論文 参考訳(メタデータ) (2023-10-06T10:36:28Z) - Adversarial training with informed data selection [53.19381941131439]
アドリアリトレーニングは、これらの悪意のある攻撃からネットワークを守るための最も効率的なソリューションである。
本研究では,ミニバッチ学習に適用すべきデータ選択戦略を提案する。
シミュレーションの結果,ロバスト性および標準精度に関して良好な妥協が得られることがわかった。
論文 参考訳(メタデータ) (2023-01-07T12:09:50Z) - DRL-GAN: A Hybrid Approach for Binary and Multiclass Network Intrusion
Detection [2.7122540465034106]
侵入検知システム(IDS)は、これらの攻撃を検出するための重要なセキュリティ技術である。
本稿では,GAN(Generative Adversarial Network)が生成した合成データを用いて,深層強化学習(DRL)モデルの入力として用いる新しいハイブリッド手法を提案する。
その結果,DRLを特定の合成データセット上でトレーニングすると,真の不均衡データセット上でのトレーニングよりも,マイノリティクラスを正しく分類する方が優れた性能が得られることがわかった。
論文 参考訳(メタデータ) (2023-01-05T19:51:24Z) - A Synthetic Dataset for 5G UAV Attacks Based on Observable Network
Parameters [3.468596481227013]
本稿では,5G以降のネットワークにおける無人航空機(UAV)攻撃のための最初の合成データセットを提案する。
このデータの主な目的は、UAV通信セキュリティのためのディープネットワーク開発を可能にすることである。
提案したデータセットは、都市環境において、静的または移動中のUAV攻撃者が認証されたUAVをターゲットにする際のネットワーク機能に関する洞察を提供する。
論文 参考訳(メタデータ) (2022-11-05T15:12:51Z) - Autoregressive Perturbations for Data Poisoning [54.205200221427994]
ソーシャルメディアからのデータスクレイピングは、不正なデータの使用に関する懸念が高まっている。
データ中毒攻撃は、スクラップ対策として提案されている。
より広範なデータセットにアクセスせずに有毒なデータを生成できる自動回帰(AR)中毒を導入する。
論文 参考訳(メタデータ) (2022-06-08T06:24:51Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
既存の対数学習アプローチは、主にクラスラベルを使用して、誤った予測につながる対数サンプルを生成する。
本稿では,未ラベルデータに対する新たな逆攻撃を提案する。これにより,モデルが摂動データサンプルのインスタンスレベルのアイデンティティを混乱させる。
ラベル付きデータなしで頑健なニューラルネットワークを逆さまにトレーニングするための,自己教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-13T08:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。