論文の概要: Mind the gaps: The fraught road to quantum advantage
- arxiv url: http://arxiv.org/abs/2510.19928v2
- Date: Tue, 04 Nov 2025 16:40:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-05 20:56:29.039448
- Title: Mind the gaps: The fraught road to quantum advantage
- Title(参考訳): ギャップを忘れる:量子優位への恐ろしい道
- Authors: Jens Eisert, John Preskill,
- Abstract要約: 量子コンピューティングは急速に進歩しているが、今日のノイズの多い量子デバイスと明日のフォールトトレラントマシンを区別する大きなギャップがある。
道の先にある4つのハードルを特定します。
これらの遷移を目標にすることで、広範囲に有用な量子コンピューティングへの進歩が加速する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing is advancing rapidly, yet substantial gaps separate today's noisy intermediate-scale quantum (NISQ) devices from tomorrow's fault-tolerant application-scale quantum (FASQ) machines. We identify four related hurdles along the road ahead: (i) from error mitigation to active error detection and correction, (ii) from rudimentary error correction to scalable fault tolerance, (iii) from early heuristics to mature, verifiable algorithms, and (iv) from exploratory simulators to credible advantage in quantum simulation. Targeting these transitions will accelerate progress toward broadly useful quantum computing.
- Abstract(参考訳): 量子コンピューティングは急速に進歩しているが、今日のノイズの多い中間スケール量子(NISQ)デバイスと、明日のフォールトトレラントなアプリケーションスケール量子(FASQ)マシンを分離する大きなギャップがある。
道路沿いの4つのハードルを特定します。
(i) 誤りの軽減から能動的誤り検出・訂正
(二)初級の誤り訂正からスケーラブルな耐故障性
(三)初期のヒューリスティックから成熟した検証可能なアルゴリズム、
(iv) 探索シミュレータから量子シミュレーションにおける信頼性のある利点まで。
これらの遷移を目標とすることで、広範囲に有用な量子コンピューティングへの進歩が加速する。
関連論文リスト
- Digital quantum simulation of many-body systems: Making the most of intermediate-scale, noisy quantum computers [51.56484100374058]
この論文は量子デバイス上の量子力学をシミュレートすることを中心にしている。
本稿では,量子力学における最も関連性の高い量子アルゴリズムの概要を紹介する。
近い将来に量子シミュレーションの恩恵を受けることができる量子力学における関連する問題を同定する。
論文 参考訳(メタデータ) (2025-08-29T10:37:19Z) - Quantum Error Mitigation for Sampling Algorithms [1.054316838380053]
本稿では,任意の量子誤差緩和手法を適用し,誤差低減出力分布を得るためのフレームワークを提案する。
また、この分布からサンプリングする方法を考案し、量子位相推定にQEM法を適用するための明示的なスキームを構築した。
論文 参考訳(メタデータ) (2025-02-16T22:00:59Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Compilation of a simple chemistry application to quantum error correction primitives [44.99833362998488]
我々は、最小限の化学例に基づいて、フォールトトレラントに量子位相推定を行うために必要な資源を推定する。
単純な化学回路でさえも1000キュービットと2300の量子誤差補正ラウンドを必要とすることがわかった。
論文 参考訳(メタデータ) (2023-07-06T18:00:10Z) - Boosting the Performance of Quantum Annealers using Machine Learning [0.0]
現在、5000量子ビットの商用アプリケーションを提供しているのは量子アニールだけである。
量子アニールによって解くことができる問題の大きさは、主に環境ノイズやプロセッサの固有の欠陥に起因する誤差によって制限される。
本稿では,機械学習手法に基づく新しい誤り訂正手法を用いて,本質的不完全性の問題に対処する。
論文 参考訳(メタデータ) (2022-03-04T14:52:10Z) - Error-mitigated deep-circuit quantum simulation: steady state and
relaxation rate problems [4.762232147934851]
閉量子系のディジタル量子シミュレーションは、トロッター誤差の蓄積に対して堅牢であることを示す。
本稿では,量子相転移臨界点近傍のスケーリング挙動に基づく新しい誤差軽減手法を提案する。
論文 参考訳(メタデータ) (2021-11-18T11:01:45Z) - Reducing runtime and error in VQE using deeper and noisier quantum
circuits [0.0]
VQEを含む多くの量子アルゴリズムのコアは、ロバスト振幅推定と呼ばれる手法を用いて精度と精度で改善することができる。
より深く、よりエラーを起こしやすい量子回路を使用することで、より少ない時間でより正確な量子計算を実現する。
この技術は、初期のフォールトトレラント量子計算の仕組みに量子計算を高速化するために用いられる。
論文 参考訳(メタデータ) (2021-10-20T17:11:29Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
本稿では、電波トラップで閉じ込められた1本のイオン列をベースとした量子計算アーキテクチャにおけるクロストーク誤差の研究を行い、個別に調整されたレーザービームで操作する。
この種の誤差は、理想的には、異なるアクティブな量子ビットのセットで処理される単一量子ゲートと2量子ビットの量子ゲートが適用されている間は、未修正のままであるオブザーバー量子ビットに影響を及ぼす。
我々は,第1原理からクロストーク誤りを微視的にモデル化し,コヒーレント対非コヒーレントなエラーモデリングの重要性を示す詳細な研究を行い,ゲートレベルでクロストークを積極的に抑制するための戦略について議論する。
論文 参考訳(メタデータ) (2020-12-21T14:20:40Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Deterministic correction of qubit loss [48.43720700248091]
量子ビットの損失は、大規模かつフォールトトレラントな量子情報プロセッサに対する根本的な障害の1つである。
トポロジカル曲面符号の最小インスタンスに対して、量子ビット損失検出と補正の完全なサイクルの実装を実験的に実証した。
論文 参考訳(メタデータ) (2020-02-21T19:48:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。