論文の概要: Revisiting Logit Distributions for Reliable Out-of-Distribution Detection
- arxiv url: http://arxiv.org/abs/2510.20134v1
- Date: Thu, 23 Oct 2025 02:16:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:17.136028
- Title: Revisiting Logit Distributions for Reliable Out-of-Distribution Detection
- Title(参考訳): 信頼性の高いアウト・オブ・ディストリビューション検出のためのロジット分布の再検討
- Authors: Jiachen Liang, Ruibing Hou, Minyang Hu, Hong Chang, Shiguang Shan, Xilin Chen,
- Abstract要約: アウト・オブ・ディストリビューション(OOD)検出は、オープンワールドアプリケーションにおけるディープラーニングモデルの信頼性を保証するために重要である。
LogitGapは、最大ロジットと残りのロジットの関係を利用する、ポストホックなOOD検出手法である。
我々は、LogitGapが様々なOOD検出シナリオとベンチマークにわたって、最先端のパフォーマンスを一貫して達成していることを示す。
- 参考スコア(独自算出の注目度): 73.9121001113687
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Out-of-distribution (OOD) detection is critical for ensuring the reliability of deep learning models in open-world applications. While post-hoc methods are favored for their efficiency and ease of deployment, existing approaches often underexploit the rich information embedded in the model's logits space. In this paper, we propose LogitGap, a novel post-hoc OOD detection method that explicitly exploits the relationship between the maximum logit and the remaining logits to enhance the separability between in-distribution (ID) and OOD samples. To further improve its effectiveness, we refine LogitGap by focusing on a more compact and informative subset of the logit space. Specifically, we introduce a training-free strategy that automatically identifies the most informative logits for scoring. We provide both theoretical analysis and empirical evidence to validate the effectiveness of our approach. Extensive experiments on both vision-language and vision-only models demonstrate that LogitGap consistently achieves state-of-the-art performance across diverse OOD detection scenarios and benchmarks. Code is available at https://github.com/GIT-LJc/LogitGap.
- Abstract(参考訳): アウト・オブ・ディストリビューション(OOD)検出は、オープンワールドアプリケーションにおけるディープラーニングモデルの信頼性を保証するために重要である。
ポストホックな手法はその効率性とデプロイの容易さのために好まれるが、既存のアプローチはモデルのロジット空間に埋め込まれた豊富な情報を過小評価することが多い。
本稿では,最大ロジットと残りロジットの関係を明示的に活用し,分布内(ID)とOODの分離性を向上するポストホックOOD検出手法であるLogitGapを提案する。
有効性をさらに向上するため,ロジット空間のよりコンパクトで情報的な部分集合に着目したLogitGapを改良する。
具体的には,評価のための最も情報性の高いロジットを自動的に識別する学習自由戦略を提案する。
提案手法の有効性を検証するため,理論的解析と実証的証拠の両方を提供する。
視覚言語と視覚のみのモデルに関する大規模な実験は、LogitGapが様々なOOD検出シナリオとベンチマークで一貫して最先端のパフォーマンスを達成していることを示している。
コードはhttps://github.com/GIT-LJc/LogitGapで入手できる。
関連論文リスト
- What If the Input is Expanded in OOD Detection? [77.37433624869857]
Out-of-distriion (OOD) 検出は未知のクラスからのOOD入力を特定することを目的としている。
In-distriion(ID)データと区別するために,様々なスコアリング関数を提案する。
入力空間に異なる共通の汚職を用いるという、新しい視点を導入する。
論文 参考訳(メタデータ) (2024-10-24T06:47:28Z) - Margin-bounded Confidence Scores for Out-of-Distribution Detection [2.373572816573706]
本稿では,非自明なOOD検出問題に対処するため,Margin bounded Confidence Scores (MaCS) と呼ばれる新しい手法を提案する。
MaCS は ID と OOD のスコアの差を拡大し、決定境界をよりコンパクトにする。
画像分類タスクのための様々なベンチマークデータセットの実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-09-22T05:40:25Z) - Enhancing OOD Detection Using Latent Diffusion [3.4899193297791054]
Out-of-Distribution(OOD)検出は、現実のシナリオにおけるマシンラーニングモデルの信頼性の高いデプロイに不可欠である。
近年の研究では、安定拡散のような生成モデルを用いて、画素空間の外部値データを合成する方法が検討されている。
我々は,潜伏空間内でOOD学習データを生成する新しいフレームワークであるOutlier-Aware Learning (OAL)を提案する。
論文 参考訳(メタデータ) (2024-06-24T11:01:43Z) - WeiPer: OOD Detection using Weight Perturbations of Class Projections [11.130659240045544]
入力のよりリッチな表現を生成する最終完全連結層にクラスプロジェクションの摂動を導入する。
我々はOpenOODフレームワークの複数のベンチマークで最先端のOOD検出結果を得る。
論文 参考訳(メタデータ) (2024-05-27T13:38:28Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
セグメンテーションにおけるアウト・オブ・ディストリビューション(OOD)オブジェクトの検出に取り組む。
私たちの主な貢献は、ObsNetと呼ばれる新しいOOD検出アーキテクチャであり、ローカル・アタック(LAA)に基づく専用トレーニングスキームと関連付けられています。
3つの異なるデータセットの文献の最近の10つの手法と比較して,速度と精度の両面で最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-03T17:09:56Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
既存の検出機構は, 分布内およびOOD入力の評価において, 極めて脆弱であることを示す。
ALOE と呼ばれる実効性のあるアルゴリズムを提案する。このアルゴリズムは,逆向きに構築された逆数と外数の両方の例にモデルを公開することにより,堅牢なトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-21T17:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。