論文の概要: Federated Learning via Meta-Variational Dropout
- arxiv url: http://arxiv.org/abs/2510.20225v1
- Date: Thu, 23 Oct 2025 05:17:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:17.431401
- Title: Federated Learning via Meta-Variational Dropout
- Title(参考訳): メタ変数ドロップアウトによるフェデレーション学習
- Authors: Insu Jeon, Minui Hong, Junhyeog Yun, Gunhee Kim,
- Abstract要約: Federated Learning (FL)は、リモート分散クライアントからグローバル推論モデルをトレーニングすることを目的としている。
従来のFLは、モデルオーバーフィットや局所モデルの多様化など、実践的な応用においてしばしば課題に直面している。
MetaVD(Meta-variational Dropout)と呼ばれる新しいベイズメタラーニング手法を提案する。
- 参考スコア(独自算出の注目度): 44.93657154263275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) aims to train a global inference model from remotely distributed clients, gaining popularity due to its benefit of improving data privacy. However, traditional FL often faces challenges in practical applications, including model overfitting and divergent local models due to limited and non-IID data among clients. To address these issues, we introduce a novel Bayesian meta-learning approach called meta-variational dropout (MetaVD). MetaVD learns to predict client-dependent dropout rates via a shared hypernetwork, enabling effective model personalization of FL algorithms in limited non-IID data settings. We also emphasize the posterior adaptation view of meta-learning and the posterior aggregation view of Bayesian FL via the conditional dropout posterior. We conducted extensive experiments on various sparse and non-IID FL datasets. MetaVD demonstrated excellent classification accuracy and uncertainty calibration performance, especially for out-of-distribution (OOD) clients. MetaVD compresses the local model parameters needed for each client, mitigating model overfitting and reducing communication costs. Code is available at https://github.com/insujeon/MetaVD.
- Abstract(参考訳): Federated Learning (FL)は、リモート分散クライアントからグローバル推論モデルをトレーニングすることを目的としている。
しかし、従来のFLは、モデルオーバーフィットや、クライアント間の制限や非IIDデータによる局所モデルの分散など、実用上の課題に直面していることが多い。
これらの課題に対処するために,メタ変分法ドロップアウト(MetaVD)と呼ばれる新しいベイズ的メタラーニング手法を導入する。
MetaVDは、共有ハイパーネットワークを通じてクライアント依存のドロップアウト率を予測することを学び、制限された非IIDデータ設定におけるFLアルゴリズムの効率的なモデルパーソナライズを可能にする。
また,メタラーニングの後方適応ビューと,条件付きドロップアウトによるベイジアンFLの後方集約ビューも強調した。
種々のスパースおよび非IIDFLデータセットについて広範な実験を行った。
MetaVDは、特にアウト・オブ・ディストリビューション(OOD)クライアントにおいて、優れた分類精度と不確実性の校正性能を示した。
MetaVDは各クライアントに必要なローカルモデルパラメータを圧縮し、過剰適合を緩和し、通信コストを削減します。
コードはhttps://github.com/insujeon/MetaVD.comで入手できる。
関連論文リスト
- Boosting Generalization Performance in Model-Heterogeneous Federated Learning Using Variational Transposed Convolution [0.27309692684728615]
Federated Learning(FL)は、分散クライアントがローカルデータを効率的に処理できるようにする、先駆的な機械学習パラダイムである。
従来のモデル均質なアプローチは、主に局所的なトレーニング手順を正規化したり、集約においてクライアントの重みを動的に調整したりする。
モデルアグリゲーションなしで未確認データに対するクライアントの一般化性能を向上させるモデル不均一FLフレームワークを提案する。
論文 参考訳(メタデータ) (2025-08-03T08:55:18Z) - Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning(FL)は、クライアントが独自のデータをプライベートに保ちながら、協調的にモデルをトレーニングする分散学習パラダイムである。
本稿では,新しいフェデレーション最適化手法のクラスであるフェデレーション中心適応最適化を提案する。
論文 参考訳(メタデータ) (2025-01-17T04:00:50Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
フェデレートラーニング(FL)は、分散データに基づく機械学習モデルの協調トレーニングを可能にする。
クライアント間でのデータはしばしば、クラス不均衡、特徴分散スキュー、サンプルサイズ不均衡、その他の現象によって大きく異なる。
本稿では,バイレベル最適化を用いた新しいベイズPFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-29T11:28:06Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - FedImpro: Measuring and Improving Client Update in Federated Learning [77.68805026788836]
フェデレートラーニング(FL)モデルは、不均一なデータによって引き起こされるクライアントのドリフトを経験することが多い。
我々は、クライアントのドリフトに対する別の視点を示し、改善されたローカルモデルを生成することにより、それを緩和することを目指している。
論文 参考訳(メタデータ) (2024-02-10T18:14:57Z) - Elastically-Constrained Meta-Learner for Federated Learning [3.032797107899338]
フェデレートラーニング(Federated Learning)とは、データ共有を禁止する複数のパーティを対象とした、協調的な機械学習モデルに対するアプローチである。
フェデレーション学習の課題の1つは、クライアント間の非制約データである。
論文 参考訳(メタデータ) (2023-06-29T05:58:47Z) - Confidence-aware Personalized Federated Learning via Variational
Expectation Maximization [34.354154518009956]
パーソナライズド・フェデレーション・ラーニング(PFL)のための新しいフレームワークを提案する。
PFLは、クライアント間で共有モデルをトレーニングする分散学習スキームである。
階層的モデリングと変分推論に基づくPFLの新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-21T20:12:27Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - Personalized Retrogress-Resilient Framework for Real-World Medical
Federated Learning [8.240098954377794]
本稿では,各クライアントに対して優れたパーソナライズモデルを生成するために,パーソナライズされた回帰耐性フレームワークを提案する。
実世界の皮膚内視鏡的FLデータセットに関する実験により、我々のパーソナライズされた回帰抵抗性フレームワークが最先端のFL手法より優れていることが証明された。
論文 参考訳(メタデータ) (2021-10-01T13:24:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。