論文の概要: Breakdance Video classification in the age of Generative AI
- arxiv url: http://arxiv.org/abs/2510.20287v1
- Date: Thu, 23 Oct 2025 07:18:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:17.523514
- Title: Breakdance Video classification in the age of Generative AI
- Title(参考訳): 世代AI時代のブレイクダンス映像分類
- Authors: Sauptik Dhar, Naveen Ramakrishnan, Michelle Munson,
- Abstract要約: この研究は、非常にニッチだが非常に人気のあるダンススポーツ(ブレイクダンス)に対する現代のビデオファンデーションモデル(エンコーダとデコーダの両方)の適用性を分析する。
以上の結果から,映像モデルは予測タスクにおいて,最先端の映像言語モデルよりも優れています。
- 参考スコア(独自算出の注目度): 0.9722250595763388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Vision Language models have seen huge application in several sports use-cases recently. Most of these works have been targeted towards a limited subset of popular sports like soccer, cricket, basketball etc; focusing on generative tasks like visual question answering, highlight generation. This work analyzes the applicability of the modern video foundation models (both encoder and decoder) for a very niche but hugely popular dance sports - breakdance. Our results show that Video Encoder models continue to outperform state-of-the-art Video Language Models for prediction tasks. We provide insights on how to choose the encoder model and provide a thorough analysis into the workings of a finetuned decoder model for breakdance video classification.
- Abstract(参考訳): 大型ビジョン言語モデルは、最近いくつかのスポーツユースケースで大きな応用例が見られた。
これらの作品の多くは、サッカー、クリケット、バスケットボールなどの人気のあるスポーツの限定的なサブセットをターゲットにしており、視覚的な質問応答、ハイライト生成のような生成的なタスクに焦点を当てている。
この研究は、非常にニッチだが非常に人気のあるダンススポーツ(ブレイクダンス)に対する現代のビデオファンデーションモデル(エンコーダとデコーダの両方)の適用性を分析する。
以上の結果から,ビデオエンコーダモデルは予測タスクにおいて,最先端のビデオ言語モデルよりも優れています。
我々は、エンコーダモデルをどう選択するかについての洞察を提供し、ブレイクダンスビデオ分類のための微調整デコーダモデルの動作を徹底的に分析する。
関連論文リスト
- Language Model Guided Interpretable Video Action Reasoning [32.999621421295416]
我々はLanguage-guided Interpretable Action Recognition framework (LaIAR)という新しいフレームワークを提案する。
LaIARは、言語モデルからの知識を活用して、認識能力とビデオモデルの解釈可能性の両方を強化する。
本質的には、ビデオモデルと言語モデルを整合させるタスクとして、ビデオモデル決定を理解することの問題を再定義する。
論文 参考訳(メタデータ) (2024-04-02T02:31:13Z) - InternVideo2: Scaling Foundation Models for Multimodal Video Understanding [51.129913789991924]
InternVideo2は、ビデオファウンデーションモデル(FM)の新たなファミリーで、ビデオ認識、ビデオ音声タスク、ビデオ中心タスクの最先端の結果を達成する。
私たちのコアデザインは、マスク付きビデオモデリング、クロスコントラスト学習、予測トークンを統合し、最大6Bビデオサイズまでスケールアップするプログレッシブトレーニングアプローチです。
論文 参考訳(メタデータ) (2024-03-22T17:57:42Z) - Analyzing Zero-Shot Abilities of Vision-Language Models on Video
Understanding Tasks [6.925770576386087]
本稿では,ゼロショット環境における映像理解タスクの評価において,画像テキストモデルの一般化能力について詳細に検討する。
実験の結果,映像テキストモデルでは,映像AR,ビデオRT,ビデオMCに優れた性能を示すことがわかった。
これらの結果は、コストのかかる事前学習のステップを回避しつつ、基礎的な画像テキストモデルを一連のビデオタスクに適応する利点を浮き彫りにした。
論文 参考訳(メタデータ) (2023-10-07T20:57:54Z) - Helping Hands: An Object-Aware Ego-Centric Video Recognition Model [60.350851196619296]
オブジェクト認識デコーダを導入し、エゴ中心の動画におけるエゴ中心の表現の性能を向上させる。
このモデルは,エゴ認識ビデオモデルの代替として機能し,視覚テキストのグラウンド化による性能向上を図っている。
論文 参考訳(メタデータ) (2023-08-15T17:58:11Z) - Probabilistic Adaptation of Text-to-Video Models [181.84311524681536]
Video Adapterは、タスク固有の小さなビデオモデルに、幅広い知識を取り入れ、大きな事前訓練されたビデオモデルの忠実度を維持することができる。
Video Adapterは、アニメーション、エゴセントリックなモデリング、シミュレートされた実世界のロボティクスデータのモデリングなど、さまざまなタスクで高品質で特殊なビデオを生成することができる。
論文 参考訳(メタデータ) (2023-06-02T19:00:17Z) - InternVideo: General Video Foundation Models via Generative and
Discriminative Learning [52.69422763715118]
動的および複雑なビデオレベルの理解タスクのための一般的なビデオ基盤モデルであるInternVideoを提案する。
InternVideoは、事前学習対象として、マスク付きビデオモデリングとビデオ言語コントラスト学習を効率的に探索する。
InternVideoは、ビデオアクション認識/検出、ビデオ言語アライメント、オープンワールドビデオアプリケーションなど、39のビデオデータセットの最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-12-06T18:09:49Z) - Sports Video Analysis on Large-Scale Data [10.24207108909385]
本稿では,スポーツビデオにおける自動機械記述のモデル化について検討する。
スポーツビデオ分析のためのNBAデータセット(NSVA)を提案する。
論文 参考訳(メタデータ) (2022-08-09T16:59:24Z) - Video Content Swapping Using GAN [1.2300363114433952]
この作業では、ビデオの任意のフレームをコンテンツとポーズに分解します。
まず、事前訓練された人間のポーズ検出を用いて映像からポーズ情報を抽出し、生成モデルを用いてコンテンツコードに基づいて映像を合成し、コードを合成する。
論文 参考訳(メタデータ) (2021-11-21T23:01:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。