論文の概要: Radar-Camera Fused Multi-Object Tracking: Online Calibration and Common Feature
- arxiv url: http://arxiv.org/abs/2510.20794v1
- Date: Thu, 23 Oct 2025 17:54:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:18.532661
- Title: Radar-Camera Fused Multi-Object Tracking: Online Calibration and Common Feature
- Title(参考訳): レーダーカメラ融合多対象追跡:オンライン校正と共通機能
- Authors: Lei Cheng, Siyang Cao,
- Abstract要約: 本稿では,レーダとカメラデータを融合して追跡効率を高めるマルチオブジェクト追跡(MOT)フレームワークを提案する。
我々は,レーダカメラの共通機能の統合と,MOTを実現するためのオンラインキャリブレーションの活用を初めて検討する。
- 参考スコア(独自算出の注目度): 7.799818865582083
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a Multi-Object Tracking (MOT) framework that fuses radar and camera data to enhance tracking efficiency while minimizing manual interventions. Contrary to many studies that underutilize radar and assign it a supplementary role--despite its capability to provide accurate range/depth information of targets in a world 3D coordinate system--our approach positions radar in a crucial role. Meanwhile, this paper utilizes common features to enable online calibration to autonomously associate detections from radar and camera. The main contributions of this work include: (1) the development of a radar-camera fusion MOT framework that exploits online radar-camera calibration to simplify the integration of detection results from these two sensors, (2) the utilization of common features between radar and camera data to accurately derive real-world positions of detected objects, and (3) the adoption of feature matching and category-consistency checking to surpass the limitations of mere position matching in enhancing sensor association accuracy. To the best of our knowledge, we are the first to investigate the integration of radar-camera common features and their use in online calibration for achieving MOT. The efficacy of our framework is demonstrated by its ability to streamline the radar-camera mapping process and improve tracking precision, as evidenced by real-world experiments conducted in both controlled environments and actual traffic scenarios. Code is available at https://github.com/radar-lab/Radar_Camera_MOT
- Abstract(参考訳): 本稿では,手作業による介入を最小限に抑えつつ,トラッキング効率を向上させるために,レーダとカメラデータを融合したマルチオブジェクト追跡(MOT)フレームワークを提案する。
レーダーを過小評価し、それを補足的な役割に割り当てる多くの研究とは対照的に、世界3D座標系におけるターゲットの正確な射程/深度情報を提供する能力にもかかわらず、レーダーに重要な役割を果たす。
一方,本論文では,オンラインキャリブレーションにより,レーダやカメラからの検知を自律的に関連付けることができる。
本研究の主な貢献は,(1)オンラインレーダカメラキャリブレーションを利用したレーダカメラ融合MOTフレームワークの開発,(2)検出対象の現実位置を正確に推定するためのレーダとカメラデータ間の共通特徴の利用,(3)特徴マッチングとカテゴリー整合性チェックの導入により,センサ関連精度を向上させるための単なる位置マッチングの限界を超過する,レーダカメラ融合MOTフレームワークの開発である。
我々の知る限り、レーダカメラの共通機能の統合とMOTを実現するためのオンラインキャリブレーションの活用を最初に検討する。
本フレームワークの有効性は,制御環境と実交通シナリオの両方において実環境実験によって実証されたように,レーダカメラマッピングプロセスの合理化と追跡精度の向上によって実証される。
コードはhttps://github.com/radar-lab/Radar_Camera_MOTで公開されている。
関連論文リスト
- Revisiting Radar Camera Alignment by Contrastive Learning for 3D Object Detection [31.69508809666884]
レーダとカメラ融合に基づく3次元物体検出アルゴリズムは優れた性能を示した。
レーダカメラアライメント(RCAlign)と呼ばれる新しいアライメントモデルを提案する。
具体的には、対向学習に基づくデュアルルートアライメント(DRA)モジュールを設計し、レーダとカメラの機能の整合と融合を図る。
レーダBEV特性の空間性を考慮すると,レーダBEV特性の密度化を改善するためにRFEモジュールが提案されている。
論文 参考訳(メタデータ) (2025-04-23T02:41:43Z) - RobuRCDet: Enhancing Robustness of Radar-Camera Fusion in Bird's Eye View for 3D Object Detection [68.99784784185019]
暗い照明や悪天候はカメラの性能を低下させる。
レーダーは騒音と位置のあいまいさに悩まされる。
本稿では,BEVの頑健な物体検出モデルであるRobuRCDetを提案する。
論文 参考訳(メタデータ) (2025-02-18T17:17:38Z) - TransRAD: Retentive Vision Transformer for Enhanced Radar Object Detection [6.163747364795787]
本稿では,新しい3次元レーダ物体検出モデルであるTransRADを提案する。
本研究では、ディープレーダオブジェクト検出における重複境界ボックスの共通問題を軽減するために、位置認識型NMSを提案する。
その結果,TransRADは2次元および3次元のレーダ検出タスクにおいて最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2025-01-29T20:21:41Z) - RCBEVDet++: Toward High-accuracy Radar-Camera Fusion 3D Perception Network [34.45694077040797]
本稿では、BEEVDetと呼ばれるレーダーカメラ融合3Dオブジェクト検出フレームワークを提案する。
RadarBEVNetは、スパースレーダーポイントを高密度の鳥の目視特徴に符号化する。
提案手法は,3次元オブジェクト検出,BEVセマンティックセグメンテーション,および3次元マルチオブジェクト追跡タスクにおいて,最先端のレーダカメラ融合を実現する。
論文 参考訳(メタデータ) (2024-09-08T05:14:27Z) - Better Monocular 3D Detectors with LiDAR from the Past [64.6759926054061]
カメラベースの3D検出器は、画像の奥行きのあいまいさのため、LiDARベースの検出器に比べて性能が劣ることが多い。
本研究では,未ラベルの歴史的LiDARデータを活用することにより,単分子3D検出器の改良を図る。
複数の最先端モデルやデータセットに対して,9.66ミリ秒の追加レイテンシとストレージコストの低い,一貫性と大幅なパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2024-04-08T01:38:43Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
この課題に対処し、動的オブジェクトの3D検出を改善するために、双方向LiDAR-Radar融合フレームワーク、Bi-LRFusionを導入する。
我々はnuScenesとORRデータセットに関する広範な実験を行い、我々のBi-LRFusionが動的オブジェクトを検出するための最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2023-06-02T10:57:41Z) - MVFusion: Multi-View 3D Object Detection with Semantic-aligned Radar and
Camera Fusion [6.639648061168067]
マルチビューレーダーカメラで融合した3Dオブジェクト検出は、より遠くの検知範囲と自律運転に有用な機能を提供する。
現在のレーダーとカメラの融合方式は、レーダー情報をカメラデータで融合するための種類の設計を提供する。
セマンティック・アライメント・レーダ機能を実現するための新しいマルチビューレーダカメラフュージョン法であるMVFusionを提案する。
論文 参考訳(メタデータ) (2023-02-21T08:25:50Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
自律運転における3D知覚のための2つの重要なセンサーは、カメラとLiDARである。
これら2つのモダリティを融合させることで、3次元知覚モデルの性能を大幅に向上させることができる。
我々は、最先端の核融合法を初めてベンチマークした。
論文 参考訳(メタデータ) (2022-05-30T09:35:37Z) - Rethinking of Radar's Role: A Camera-Radar Dataset and Systematic
Annotator via Coordinate Alignment [38.24705460170415]
CRUWと呼ばれる新しいデータセットを体系的なアノテーションとパフォーマンス評価システムで提案する。
CRUWは、レーダーの無線周波数(RF)画像から3Dのオブジェクトを純粋に分類し、ローカライズすることを目指しています。
私たちの知る限り、CRUWは体系的なアノテーションと評価システムを備えた最初の公開大規模データセットです。
論文 参考訳(メタデータ) (2021-05-11T17:13:45Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
本稿では,レーダセンサ間の相互干渉問題に対処するために,複合価値畳み込みニューラルネットワーク(CVCNN)を提案する。
CVCNNはデータ効率を高め、ネットワークトレーニングを高速化し、干渉除去時の位相情報の保存を大幅に改善する。
論文 参考訳(メタデータ) (2021-04-29T10:06:29Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。