論文の概要: Scalable Neural Decoders for Practical Real-Time Quantum Error Correction
- arxiv url: http://arxiv.org/abs/2510.22724v1
- Date: Sun, 26 Oct 2025 15:49:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 15:28:15.337114
- Title: Scalable Neural Decoders for Practical Real-Time Quantum Error Correction
- Title(参考訳): 実時間量子誤り訂正のためのスケーラブルなニューラルデコーダ
- Authors: Changwon Lee, Tak Hur, Daniel K. Park,
- Abstract要約: 我々は,$mathcalO(d2)$の複雑な状態空間モデルであるtextitMambaベースのデコーダを導入,評価する。
Mambaデコーダはスピードと精度のバランスを保ち、スケーラブルでリアルタイムな量子エラー修正のための有望なアーキテクチャである。
- 参考スコア(独自算出の注目度): 1.474723404975345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-time, scalable, and accurate decoding is a critical component for realizing a fault-tolerant quantum computer. While Transformer-based neural decoders such as \textit{AlphaQubit} have demonstrated high accuracy, the computational complexity of their core attention mechanism, which scales as $\mathcal{O}(d^4)$ with code distance $d$, results in decoding speeds insufficient for practical real-time applications. In this work, we introduce and evaluate a \textit{Mamba}-based decoder, a state-space model with $\mathcal{O}(d^2)$ complexity. In memory experiments using Sycamore hardware data, our Mamba decoder matches the performance of its Transformer-based counterpart, providing that its superior efficiency does not come at the cost of performance. Crucially, in simulated real-time scenarios that account for decoder-induced noise, the Mamba decoder significantly outperforms the Transformer, exhibiting a higher error threshold of $0.0104$ compared to $0.0097$. These results demonstrate that Mamba decoders offer a compelling balance between speed and accuracy, making them a promising architecture for scalable, real-time quantum error correction.
- Abstract(参考訳): リアルタイムでスケーラブルで正確な復号化は、フォールトトレラントな量子コンピュータを実現する上で重要な要素である。
変換器をベースとしたニューラルデコーダ(例えば、textit{AlphaQubit})は高い精度を示しているが、そのコアアテンション機構の計算複雑性は、コード距離$d$で$\mathcal{O}(d^4)$とスケールし、実際のリアルタイムアプリケーションではデコード速度が不十分である。
本稿では,$\mathcal{O}(d^2)$複雑さを持つ状態空間モデルであるtextit{Mamba} ベースのデコーダを紹介し,評価する。
Sycamoreのハードウェアデータを用いたメモリ実験では、我々のMambaデコーダはTransformerベースの性能と一致し、その優れた効率性はパフォーマンスの犠牲にならない。
重要なのは、デコーダが引き起こしたノイズをシミュレートしたリアルタイムシナリオにおいて、MambaデコーダはTransformerを著しく上回り、0.0104$と0.0097$より高いエラー閾値を示す。
これらの結果は、Mambaデコーダが速度と精度のバランスを保ち、スケーラブルでリアルタイムな量子誤り訂正のための有望なアーキテクチャであることを示している。
関連論文リスト
- Accelerating Error Correction Code Transformers [56.75773430667148]
本稿では,トランスを用いたデコーダの高速化手法を提案する。
最新のハードウェアでは、90%の圧縮比を実現し、算術演算エネルギー消費を少なくとも224倍削減する。
論文 参考訳(メタデータ) (2024-10-08T11:07:55Z) - Demonstrating real-time and low-latency quantum error correction with superconducting qubits [52.08698178354922]
超伝導量子プロセッサに組み込まれたスケーラブルFPGAデコーダを用いて低遅延フィードバックを示す。
復号ラウンド数が増加するにつれて、論理誤差の抑制が観察される。
この作業でデコーダのスループットとレイテンシが発達し、デバイスの継続的な改善と相まって、次世代の実験がアンロックされた。
論文 参考訳(メタデータ) (2024-10-07T17:07:18Z) - Quantum error correction below the surface code threshold [107.92016014248976]
量子誤り訂正は、複数の物理量子ビットを論理量子ビットに結合することで、実用的な量子コンピューティングに到達するための経路を提供する。
本研究では, リアルタイムデコーダと統合された距離7符号と距離5符号の2つの面符号メモリを臨界閾値以下で動作させる。
以上の結果から,大規模なフォールトトレラント量子アルゴリズムの動作要件を実現する装置の性能が示唆された。
論文 参考訳(メタデータ) (2024-08-24T23:08:50Z) - Neural network decoder for near-term surface-code experiments [0.7100520098029438]
ニューラルネットワークデコーダは従来のデコーダに比べて論理的誤り率を低くすることができる。
これらのデコーダは物理エラー率に関する事前情報を必要としないため、高度に適応可能である。
論文 参考訳(メタデータ) (2023-07-06T20:31:25Z) - Data-driven decoding of quantum error correcting codes using graph neural networks [0.0]
グラフニューラルネットワーク(GNN)を用いたモデルフリーでデータ駆動型デコーディングアプローチについて検討する。
GNNベースのデコーダは、シミュレーションデータのみを与えられた表面コード上での回路レベルのノイズに対する整合デコーダよりも優れていることを示す。
その結果、デコードに対する純粋にデータ駆動型アプローチが、実用的な量子誤り訂正のための実行可能な選択肢である可能性が示唆された。
論文 参考訳(メタデータ) (2023-07-03T17:25:45Z) - Belief propagation as a partial decoder [0.0]
本稿では,デコードサイクルを高速化し,精度を向上する2段デコーダを提案する。
第一段階では、信念伝播に基づく部分復号器を用いて、高い確率で発生した誤りを訂正する。
第2段階では、従来のデコーダが残したエラーを補正する。
論文 参考訳(メタデータ) (2023-06-29T17:44:20Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
データ効率のよいニューラルデコーダを導入し、この問題の対称性を活用する。
本稿では,従来のニューラルデコーダに比べて精度の高い新しい同変アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-04-14T19:46:39Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
高速かつ高精度なデコーダを導入し、幅広い種類の量子誤り訂正符号で使用することができる。
我々のデコーダは、信仰マッチングと信念フィンドと呼ばれ、すべてのノイズ情報を活用し、QECの高精度なデモを解き放つ。
このデコーダは, 標準の正方形曲面符号に対して, 整形曲面符号において, より高いしきい値と低い量子ビットオーバーヘッドをもたらすことがわかった。
論文 参考訳(メタデータ) (2022-03-09T18:48:54Z) - Adversarial Neural Networks for Error Correcting Codes [76.70040964453638]
機械学習(ML)モデルの性能と適用性を高めるための一般的なフレームワークを紹介する。
本稿では,MLデコーダと競合する識別器ネットワークを組み合わせることを提案する。
我々のフレームワークはゲーム理論であり、GAN(Generative Adversarial Network)によって動機付けられている。
論文 参考訳(メタデータ) (2021-12-21T19:14:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。