論文の概要: When No Paths Lead to Rome: Benchmarking Systematic Neural Relational Reasoning
- arxiv url: http://arxiv.org/abs/2510.23532v1
- Date: Mon, 27 Oct 2025 17:09:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 15:28:15.634262
- Title: When No Paths Lead to Rome: Benchmarking Systematic Neural Relational Reasoning
- Title(参考訳): ローマへの道が無ければ - システム的ニューラルネットワーク推論のベンチマーク
- Authors: Anirban Das, Irtaza Khalid, Rafael Peñaloza, Steven Schockaert,
- Abstract要約: NoRAは、いくつかのレベルの難易度を追加し、パスベースの推論を超えるモデルを必要とする新しいベンチマークである。
ニューラルネットワークを用いた体系的リレーショナル推論の分野において,NoRAがさらなる進歩をサポートする方法を示す。
- 参考スコア(独自算出の注目度): 19.97753055538205
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Designing models that can learn to reason in a systematic way is an important and long-standing challenge. In recent years, a wide range of solutions have been proposed for the specific case of systematic relational reasoning, including Neuro-Symbolic approaches, variants of the Transformer architecture, and specialised Graph Neural Networks. However, existing benchmarks for systematic relational reasoning focus on an overly simplified setting, based on the assumption that reasoning can be reduced to composing relational paths. In fact, this assumption is hard-baked into the architecture of several recent models, leading to approaches that can perform well on existing benchmarks but are difficult to generalise to other settings. To support further progress in the field of systematic relational reasoning with neural networks, we introduce NoRA, a new benchmark which adds several levels of difficulty and requires models to go beyond path-based reasoning.
- Abstract(参考訳): 体系的な方法で推論を学べるモデルの設計は、重要かつ長期間にわたる課題である。
近年、ニューロ・シンボリックアプローチ、トランスフォーマーアーキテクチャの変種、特殊化グラフニューラルネットワークなど、体系的リレーショナル推論の特定のケースに対する幅広いソリューションが提案されている。
しかし、体系的リレーショナル推論のための既存のベンチマークは、リレーショナルパスを構成するために推論を削減できるという仮定に基づいて、過度に単純化された設定に焦点を当てている。
実際、この仮定は、いくつかの最近のモデルのアーキテクチャに根付いており、既存のベンチマークでうまく機能するが、他の設定に一般化するのは難しいアプローチにつながっている。
ニューラルネットワークによる体系的リレーショナル推論の分野におけるさらなる進歩を支援するために、いくつかのレベルの難易度を追加し、パスベースの推論を超えるモデルを必要とする新しいベンチマークであるNoRAを紹介した。
関連論文リスト
- Certified Neural Approximations of Nonlinear Dynamics [51.01318247729693]
安全クリティカルな文脈では、神経近似の使用は、基礎となるシステムとの密接性に公式な境界を必要とする。
本稿では,認証された一階述語モデルに基づく新しい,適応的で並列化可能な検証手法を提案する。
論文 参考訳(メタデータ) (2025-05-21T13:22:20Z) - A Survey of Model Architectures in Information Retrieval [59.61734783818073]
2019年から現在までの期間は、情報検索(IR)と自然言語処理(NLP)における最大のパラダイムシフトの1つとなっている。
従来の用語ベースの手法から現代のニューラルアプローチまで,特にトランスフォーマーベースのモデルとそれに続く大規模言語モデル(LLM)の影響が注目されている。
今後の課題と今後の方向性について、先見的な議論で締めくくります。
論文 参考訳(メタデータ) (2025-02-20T18:42:58Z) - Understanding the differences in Foundation Models: Attention, State Space Models, and Recurrent Neural Networks [50.29356570858905]
本稿では,これらすべてのアーキテクチャの共通表現に関する原則的な調査を可能にする動的システムフレームワーク(DSF)について紹介する。
ソフトマックスアテンションと他のモデルクラスとの原理的比較を行い、ソフトマックスアテンションを近似できる理論条件について議論する。
このことは、DSFが将来のより効率的でスケーラブルな基盤モデルの体系的な開発を導く可能性を示している。
論文 参考訳(メタデータ) (2024-05-24T17:19:57Z) - Extensions to Generalized Annotated Logic and an Equivalent Neural
Architecture [4.855957436171202]
本稿では,ニューロシンボリックシステムに対する望ましい基準のリストを提案し,既存のアプローチのいくつかがこれらの基準にどう対処するかを検討する。
次に、等価なニューラルアーキテクチャの作成を可能にするアノテーション付き一般化論理の拡張を提案する。
トレーニングプロセスの継続的な最適化に依存する従来のアプローチとは異なり、当社のフレームワークは、離散最適化を使用する二項化ニューラルネットワークとして設計されている。
論文 参考訳(メタデータ) (2023-02-23T17:39:46Z) - A Multi-criteria Approach to Evolve Sparse Neural Architectures for
Stock Market Forecasting [0.0]
本研究は, 市場指標の移動予測のための, 効率的かつ同相なニューラルアーキテクチャを進化させる新しい枠組みを提案する。
新しい探索パラダイムである2次元スワム (2DS) が, マルチ基準ニューラルアーキテクチャサーチのために提案されている。
本研究の結果は,提案手法がより優れた一般化能力を持つ同相ネットワークを進化させることができることを示すものである。
論文 参考訳(メタデータ) (2021-11-15T19:44:10Z) - Neuro-algorithmic Policies enable Fast Combinatorial Generalization [16.74322664734553]
近年, 標準アーキテクチャの一般化は, 排他的データ取得後にのみ改善されることが示唆されている。
MDPフレームワークの特定のサブクラスに対して、これは神経アルゴリズムアーキテクチャーによって緩和できることを示す。
本稿では,ニューラルネットワークと組込み時間に依存した最短経路ソルバからなる自律神経系ポリシアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-02-15T11:07:59Z) - Neural-iLQR: A Learning-Aided Shooting Method for Trajectory
Optimization [17.25824905485415]
制約のない制御空間上の学習支援シューティング手法であるNeural-iLQRを提案する。
システムモデルにおける不正確さの存在下で、従来のiLQRよりも著しく優れていることが示されている。
論文 参考訳(メタデータ) (2020-11-21T07:17:28Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
本稿では,既存のアプローチと異なるニューラルネットワークの定義方法に焦点をあてる。
ニューラルネットワークの構造は、データとの相互作用にも拡張される制約の特別なクラスによって定義される。
提案した理論は時間領域にキャストされ, データを順序づけられた方法でネットワークに提示する。
論文 参考訳(メタデータ) (2020-09-01T09:07:25Z) - Rule-based Bayesian regression [0.90238471756546]
回帰問題に対処する新しいルールベースのアプローチを導入する。
新しい手法は2つの枠組みから成り立っている: (i)ベイズ的推論を用いて利害パラメータの不確実性に関する情報を提供する; (ii)ルールベースのシステムを通じて専門家の知識を組み込むことを可能にする。
論文 参考訳(メタデータ) (2020-08-02T07:20:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。