論文の概要: Trajectory Design for UAV-Based Low-Altitude Wireless Networks in Unknown Environments: A Digital Twin-Assisted TD3 Approach
- arxiv url: http://arxiv.org/abs/2510.24255v1
- Date: Tue, 28 Oct 2025 10:05:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-29 17:50:20.180813
- Title: Trajectory Design for UAV-Based Low-Altitude Wireless Networks in Unknown Environments: A Digital Twin-Assisted TD3 Approach
- Title(参考訳): 未知環境におけるUAVを用いた低高度無線ネットワークの軌道設計:デジタル双極子支援TD3アプローチ
- Authors: Jihao Luo, Zesong Fei, Xinyi Wang, Le Zhao, Yuanhao Cui, Guangxu Zhu, Dusit Niyato,
- Abstract要約: 低高度無線ネットワーク(LAWN)のキーイネーブラーとして無人航空機(UAV)が登場している
我々は、デジタルツイン(DT)支援トレーニングおよびデプロイメントフレームワークを提案する。
このフレームワークでは、UAVは統合されたセンシングと通信信号を送信し、地上ユーザーに通信サービスを提供し、同時にDTサーバにアップロードされたエコーを収集して、仮想環境(VE)を段階的に構築する。
これらのVEはモデルトレーニングを加速し、展開中のリアルタイムUAVセンシングデータを継続的に更新し、意思決定をサポートし、飛行安全性を向上する。
- 参考スコア(独自算出の注目度): 62.11847362756054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unmanned aerial vehicles (UAVs) are emerging as key enablers for low-altitude wireless network (LAWN), particularly when terrestrial networks are unavailable. In such scenarios, the environmental topology is typically unknown; hence, designing efficient and safe UAV trajectories is essential yet challenging. To address this, we propose a digital twin (DT)-assisted training and deployment framework. In this framework, the UAV transmits integrated sensing and communication signals to provide communication services to ground users, while simultaneously collecting echoes that are uploaded to the DT server to progressively construct virtual environments (VEs). These VEs accelerate model training and are continuously updated with real-time UAV sensing data during deployment, supporting decision-making and enhancing flight safety. Based on this framework, we further develop a trajectory design scheme that integrates simulated annealing for efficient user scheduling with the twin-delayed deep deterministic policy gradient algorithm for continuous trajectory design, aiming to minimize mission completion time while ensuring obstacle avoidance. Simulation results demonstrate that the proposed approach achieves faster convergence, higher flight safety, and shorter mission completion time compared with baseline methods, providing a robust and efficient solution for LAWN deployment in unknown environments.
- Abstract(参考訳): 無人航空機(UAV)は低高度無線ネットワーク(LAWN)のキーイネーブラーとして登場している。
このようなシナリオでは、環境トポロジは一般的に不明であるため、効率的で安全なUAV軌道を設計することは不可欠であるが困難である。
そこで本研究では,デジタルツイン(DT)を利用したトレーニングおよびデプロイメントフレームワークを提案する。
このフレームワークでは、UAVは統合されたセンシングと通信信号を送信し、地上ユーザーに通信サービスを提供し、同時にDTサーバにアップロードされたエコーを収集して、仮想環境(VE)を段階的に構築する。
これらのVEはモデルトレーニングを加速し、展開中のリアルタイムUAVセンシングデータを継続的に更新し、意思決定をサポートし、飛行安全性を向上する。
この枠組みに基づいて, 効率的なユーザスケジューリングのためのシミュレーションアニーリングと, 連続軌道設計のための2遅延深い決定論的ポリシー勾配アルゴリズムを統合した軌道設計手法をさらに発展させ, 障害物回避を図りながらミッション完了時間を最小化することを目的とした。
シミュレーションの結果,提案手法は,ベースライン法よりも高速な収束,高い飛行安全性,短いミッション完了時間を実現し,未知環境におけるLAWN配置の堅牢かつ効率的なソリューションを提供することが示された。
関連論文リスト
- When UAV Swarm Meets IRS: Collaborative Secure Communications in Low-altitude Wireless Networks [68.45202147860537]
低高度無線ネットワーク (LAWN) は、多様なアプリケーションに対して、拡張されたカバレッジ、信頼性、スループットを提供する。
これらのネットワークは、既知のおよび潜在的に未知の盗聴者の両方から重大なセキュリティ上の脆弱性に直面している。
本稿では,Swarm内で選択されたUAVを仮想アンテナアレイとして機能させる,LAWNのための新しいセキュア通信フレームワークを提案する。
論文 参考訳(メタデータ) (2025-10-25T02:02:14Z) - Age of Information Minimization in UAV-Enabled Integrated Sensing and Communication Systems [34.92822911897626]
統合センシング通信(ISAC)機能を備えた無人航空機(UAV)は、将来の無線ネットワークにおいて重要な役割を果たすと想定されている。
ターゲットセンシングとマルチユーザ通信を同時に行う老化情報(AoI)システムを提案する。
論文 参考訳(メタデータ) (2025-07-18T18:17:09Z) - Handover and SINR-Aware Path Optimization in 5G-UAV mmWave Communication using DRL [0.5315148938765306]
UAV支援5G mmWave無線ネットワークにおける経路最適化のための新しいモデルフリーアクタ・アクタ・クリティック・ディープ・強化学習(AC-DRL)フレームワークを提案する。
我々は、gNBに接続されたUAVが最短時間で所望の目的地への最適な経路を決定することができるAC-RLエージェントを訓練する。
論文 参考訳(メタデータ) (2025-04-03T15:28:04Z) - UAV Swarm-enabled Collaborative Secure Relay Communications with
Time-domain Colluding Eavesdropper [115.56455278813756]
航空中継機としての無人航空機(UAV)は、インターネットモノ(IoT)ネットワークの補助として事実上魅力的である。
本研究では,UAV基地局と端末端末装置間のセキュアな通信を支援するために,UAVを活用することを目的とする。
論文 参考訳(メタデータ) (2023-10-03T11:47:01Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
本稿では,無人航空機(UAV)による3D環境におけるIoT(Internet-of-Things)システムについて検討する。
本稿では,TD3-TDCTMアルゴリズムの完成時間最小化のためのトラジェクトリ設計を提案する。
シミュレーションの結果,従来の3つの非学習ベースライン法よりもTD3-TDCTMアルゴリズムの方が優れていることが示された。
論文 参考訳(メタデータ) (2021-07-23T03:33:29Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z) - Learning-Based UAV Trajectory Optimization with Collision Avoidance and
Connectivity Constraints [0.0]
無人航空機(UAV)は無線ネットワークの不可欠な部分であると期待されている。
本稿では,衝突回避と無線接続制約による複数UAV軌道最適化問題を再構成する。
この問題を解決するために,分散型深層強化学習手法を提案する。
論文 参考訳(メタデータ) (2021-04-03T22:22:20Z) - UAV Path Planning for Wireless Data Harvesting: A Deep Reinforcement
Learning Approach [18.266087952180733]
本稿では,IoT(Internet of Things)デバイスからのUAV対応データ収集に対するエンドツーエンド強化学習手法を提案する。
自律ドローンは、限られた飛行時間と障害物回避を受ける分散センサーノードからデータを収集する。
提案するネットワークアーキテクチャにより,エージェントが様々なシナリオパラメータの移動決定を行うことができることを示す。
論文 参考訳(メタデータ) (2020-07-01T15:14:16Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
無人航空機(UAV)は様々なタスクを実行するために機械学習(ML)を利用する必要がある。
本稿では,UAVスワム内に分散学習(FL)アルゴリズムを実装するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T14:04:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。