論文の概要: Group Relative Attention Guidance for Image Editing
- arxiv url: http://arxiv.org/abs/2510.24657v1
- Date: Tue, 28 Oct 2025 17:22:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-29 15:35:37.304096
- Title: Group Relative Attention Guidance for Image Editing
- Title(参考訳): 画像編集のためのグループ相対的注意誘導
- Authors: Xuanpu Zhang, Xuesong Niu, Ruidong Chen, Dan Song, Jianhao Zeng, Penghui Du, Haoxiang Cao, Kai Wu, An-an Liu,
- Abstract要約: Group Relative Attention Guidance (GRAG) は、編集命令に対する入力画像に対するモデルの焦点を変調するシンプルで効果的な方法である。
私たちのコードはhttps://www.littlemisfit.com/little-misfit/GRAG-Image-Editing.comでリリースされます。
- 参考スコア(独自算出の注目度): 38.299491082179905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, image editing based on Diffusion-in-Transformer models has undergone rapid development. However, existing editing methods often lack effective control over the degree of editing, limiting their ability to achieve more customized results. To address this limitation, we investigate the MM-Attention mechanism within the DiT model and observe that the Query and Key tokens share a bias vector that is only layer-dependent. We interpret this bias as representing the model's inherent editing behavior, while the delta between each token and its corresponding bias encodes the content-specific editing signals. Based on this insight, we propose Group Relative Attention Guidance, a simple yet effective method that reweights the delta values of different tokens to modulate the focus of the model on the input image relative to the editing instruction, enabling continuous and fine-grained control over editing intensity without any tuning. Extensive experiments conducted on existing image editing frameworks demonstrate that GRAG can be integrated with as few as four lines of code, consistently enhancing editing quality. Moreover, compared to the commonly used Classifier-Free Guidance, GRAG achieves smoother and more precise control over the degree of editing. Our code will be released at https://github.com/little-misfit/GRAG-Image-Editing.
- Abstract(参考訳): 近年,Diffusion-in-Transformerモデルに基づく画像編集が急速に進んでいる。
しかし、既存の編集方法は編集の程度を効果的に制御できないことが多く、よりカスタマイズされた結果を達成する能力が制限されている。
この制限に対処するため、DiTモデル内のMM-Attention機構を調査し、クエリとキートークンが層依存のバイアスベクトルを共有することを観察する。
このバイアスをモデル固有の編集動作と解釈し、各トークンとそれに対応するバイアスとのデルタは、コンテンツ固有の編集信号を符号化する。
この知見に基づいて,異なるトークンのデルタ値を再重み付けし,編集命令に対する入力画像の焦点を変調するグループ相対的注意誘導法を提案する。
既存の画像編集フレームワークで実施された大規模な実験は、GRAGを4行のコードで統合できることを示し、編集品質を継続的に改善している。
さらに、一般的に使われている分類自由誘導と比較して、GRAGは編集の程度をよりスムーズで正確に制御できる。
私たちのコードはhttps://github.com/little-misfit/GRAG-Image-Editing.comでリリースされます。
関連論文リスト
- Kontinuous Kontext: Continuous Strength Control for Instruction-based Image Editing [76.44219733285898]
Kontinuous Kontext は命令駆動の編集モデルであり、編集強度を制御できる新しい次元を提供する。
軽量プロジェクタネットワークは、入力スカラーと編集命令をモデルの変調空間の係数にマッピングする。
本モデルのトレーニングには,既存の生成モデルを用いて,画像編集・指導・強化四重項の多種多様なデータセットを合成する。
論文 参考訳(メタデータ) (2025-10-09T17:51:03Z) - SAEdit: Token-level control for continuous image editing via Sparse AutoEncoder [52.754326452329956]
本稿では,テキスト埋め込みのトークンレベルの操作を通じて,アンタングルと連続的な編集を行う手法を提案する。
編集は、対象属性の強度を制御する、慎重に選択された方向に沿って埋め込みを操作することで行われる。
本手法は,拡散過程を変更せずにテキスト埋め込みを直接操作し,画像のバックボーンに広く適用可能な,非依存なモデルとする。
論文 参考訳(メタデータ) (2025-10-06T17:51:04Z) - Visual Autoregressive Modeling for Instruction-Guided Image Editing [97.04821896251681]
画像編集を次世代の予測問題として再編成する視覚的自己回帰フレームワークを提案する。
VarEditは、正確な編集を実現するために、マルチスケールのターゲット機能を生成する。
1.2秒で512times512$編集を完了し、同じサイズのUltraEditよりも2.2$times$高速になった。
論文 参考訳(メタデータ) (2025-08-21T17:59:32Z) - Image Editing As Programs with Diffusion Models [69.05164729625052]
本稿では,Diffusion Transformer (DiT) アーキテクチャ上に構築された統合画像編集フレームワークである IEAP (Image Editing As Programs) を紹介する。
IEAPは、複雑な編集命令を原子操作のシーケンスに分解して、リダミストレンズによる命令編集にアプローチする。
我々のフレームワークは、特に複雑なマルチステップ命令に対して、より優れた精度とセマンティック忠実度を提供する。
論文 参考訳(メタデータ) (2025-06-04T16:57:24Z) - DiffEditor: Boosting Accuracy and Flexibility on Diffusion-based Image
Editing [66.43179841884098]
大規模テキスト・ツー・イメージ(T2I)拡散モデルは、ここ数年で画像生成に革命をもたらした。
既存の拡散型画像編集における2つの弱点を正すためにDiffEditorを提案する。
本手法は,様々な精細な画像編集タスクにおいて,最先端の性能を効率的に達成することができる。
論文 参考訳(メタデータ) (2024-02-04T18:50:29Z) - InFusion: Inject and Attention Fusion for Multi Concept Zero-Shot
Text-based Video Editing [27.661609140918916]
InFusionはゼロショットテキストベースのビデオ編集のためのフレームワークである。
編集プロンプトで言及されているさまざまな概念に対する画素レベルの制御による複数の概念の編集をサポートする。
私たちのフレームワークは、トレーニングを必要としないため、編集のためのワンショットチューニングモデルの安価な代替品です。
論文 参考訳(メタデータ) (2023-07-22T17:05:47Z) - LEDITS: Real Image Editing with DDPM Inversion and Semantic Guidance [0.0]
LEDITSはリアルタイム編集のための軽量なアプローチであり、Edit Friendly DDPMインバージョン技術とSemantic Guidanceを統合している。
このアプローチは、微妙で広範囲な編集や構成やスタイルの変更といった多彩な編集を実現すると同時に、アーキテクチャの最適化や拡張も必要としない。
論文 参考訳(メタデータ) (2023-07-02T09:11:09Z) - EditGAN: High-Precision Semantic Image Editing [120.49401527771067]
EditGANは高品質で高精度なセマンティック画像編集のための新しい手法である。
EditGANは前例のない細部と自由度で画像を操作可能であることを示す。
また、複数の編集を組み合わせることも簡単で、EditGANのトレーニングデータ以外の編集も可能になります。
論文 参考訳(メタデータ) (2021-11-04T22:36:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。