論文の概要: Tongyi DeepResearch Technical Report
- arxiv url: http://arxiv.org/abs/2510.24701v1
- Date: Tue, 28 Oct 2025 17:53:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-29 15:35:37.328441
- Title: Tongyi DeepResearch Technical Report
- Title(参考訳): Tongyi DeepResearch 技術報告
- Authors: Tongyi DeepResearch Team, Baixuan Li, Bo Zhang, Dingchu Zhang, Fei Huang, Guangyu Li, Guoxin Chen, Huifeng Yin, Jialong Wu, Jingren Zhou, Kuan Li, Liangcai Su, Litu Ou, Liwen Zhang, Pengjun Xie, Rui Ye, Wenbiao Yin, Xinmiao Yu, Xinyu Wang, Xixi Wu, Xuanzhong Chen, Yida Zhao, Zhen Zhang, Zhengwei Tao, Zhongwang Zhang, Zile Qiao, Chenxi Wang, Donglei Yu, Gang Fu, Haiyang Shen, Jiayin Yang, Jun Lin, Junkai Zhang, Kui Zeng, Li Yang, Hailong Yin, Maojia Song, Ming Yan, Peng Xia, Qian Xiao, Rui Min, Ruixue Ding, Runnan Fang, Shaowei Chen, Shen Huang, Shihang Wang, Shihao Cai, Weizhou Shen, Xiaobin Wang, Xin Guan, Xinyu Geng, Yingcheng Shi, Yuning Wu, Zhuo Chen, Zijian Li, Yong Jiang,
- Abstract要約: Tongyi DeepResearchは、自律的な深層研究機関にインセンティブを与えるため、エンドツーエンドのトレーニングフレームワークを通じて開発されている。
Tongyi DeepResearchは合計35億のパラメータを達成している。
私たちは、コミュニティを強化するためのモデル、フレームワーク、完全なソリューションをオープンソースにしています。
- 参考スコア(独自算出の注目度): 109.83580779372365
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Tongyi DeepResearch, an agentic large language model, which is specifically designed for long-horizon, deep information-seeking research tasks. To incentivize autonomous deep research agency, Tongyi DeepResearch is developed through an end-to-end training framework that combines agentic mid-training and agentic post-training, enabling scalable reasoning and information seeking across complex tasks. We design a highly scalable data synthesis pipeline that is fully automatic, without relying on costly human annotation, and empowers all training stages. By constructing customized environments for each stage, our system enables stable and consistent interactions throughout. Tongyi DeepResearch, featuring 30.5 billion total parameters, with only 3.3 billion activated per token, achieves state-of-the-art performance across a range of agentic deep research benchmarks, including Humanity's Last Exam, BrowseComp, BrowseComp-ZH, WebWalkerQA, xbench-DeepSearch, FRAMES and xbench-DeepSearch-2510. We open-source the model, framework, and complete solutions to empower the community.
- Abstract(参考訳): Tongyi DeepResearchはエージェント型大規模言語モデルで、長期にわたる深層情報探索研究に特化して設計されている。
Tongyi DeepResearchは、自律的な深層研究機関にインセンティブを与えるために、エージェントトレーニングとエージェントポストトレーニングを組み合わせたエンドツーエンドのトレーニングフレームワークを開発し、複雑なタスクをまたいだスケーラブルな推論と情報検索を可能にする。
コストのかかる人的アノテーションに頼ることなく、完全に自動化された、スケーラブルなデータ合成パイプラインを設計し、すべてのトレーニングステージに権限を与えます。
各ステージごとにカスタマイズされた環境を構築することで、システム全体の安定的で一貫したインタラクションを可能にします。
Tongyi DeepResearchは、30.5億の合計パラメータを特徴とし、トークン当たりのアクティベート数はわずか330億であり、HumanityのLast Exam、BrowseComp、BrowseComp-ZH、WebWalkerQA、xbench-DeepSearch、FRAMES、xbench-DeepSearch-2510など、さまざまなエージェントディープリサーチベンチマークで最先端のパフォーマンスを実現している。
私たちは、コミュニティを強化するためのモデル、フレームワーク、完全なソリューションをオープンソースにしています。
関連論文リスト
- LiveResearchBench: A Live Benchmark for User-Centric Deep Research in the Wild [86.6586720134927]
LiveResearchBenchは、日々の生活、企業、アカデミックにまたがる100の専門家によるタスクのベンチマークである。
DeepEvalは、コンテンツレベルの品質とレポートレベルの品質の両方をカバーする包括的なスイートである。
我々の分析は、信頼性と洞察に富んだ深い研究を進めるために必要な、現在の強み、繰り返し発生する障害モード、および重要なシステムコンポーネントを明らかにします。
論文 参考訳(メタデータ) (2025-10-16T02:49:16Z) - Fathom-DeepResearch: Unlocking Long Horizon Information Retrieval and Synthesis for SLMs [7.3517692707289415]
本稿では2つの特殊モデルからなるエージェントシステムであるFathom-DeepResearchを紹介する。
ひとつは、ライブWeb検索とターゲットWebページクエリによるエビデンスベースの調査に最適化された、DeepSearchモデルであるFathom-Search-4Bである。
2つ目は、Qwen3-4Bから訓練されたFathom-Synthesizer-4Bである。
論文 参考訳(メタデータ) (2025-09-28T22:58:11Z) - Benchmarking Deep Search over Heterogeneous Enterprise Data [73.55304268238474]
検索強化生成(RAG)の形式を評価するための新しいベンチマークを提案する。
RAGは、多種多様な、しかし関連するソースに対して、ソースを意識したマルチホップ推論を必要とする。
製品計画、開発、サポートステージをまたいだビジネスをシミュレートする合成データパイプラインを使用して構築します。
論文 参考訳(メタデータ) (2025-06-29T08:34:59Z) - From Web Search towards Agentic Deep Research: Incentivizing Search with Reasoning Agents [96.65646344634524]
推論とエージェント能力を備えた大規模言語モデル(LLM)は、エージェントディープリサーチ(Agenic Deep Research)と呼ばれる新しいパラダイムを取り入れている。
静的なWeb検索から,計画,探索,学習を行う対話型エージェントベースのシステムへの進化を辿ります。
我々はエージェントディープリサーチが既存のアプローチを著しく上回るだけでなく、将来の情報探索において支配的なパラダイムになることを実証する。
論文 参考訳(メタデータ) (2025-06-23T17:27:19Z) - DeepResearcher: Scaling Deep Research via Reinforcement Learning in Real-world Environments [20.498100965239818]
我々は、LLMベースのディープリサーチエージェントのエンドツーエンドトレーニングのための、初の総合的なフレームワークであるDeepResearcherを紹介する。
固定コーパス内にすべての必要な情報が存在すると仮定するRAGベースのアプローチとは異なり、我々の手法はオープンウェブのノイズ、非構造化、動的性質をナビゲートするエージェントを訓練する。
オープンドメインの研究タスクに関する大規模な実験は、DeepResearcherがエンジニアリングベースの素早いベースラインよりも最大28.9ポイントの大幅な改善を達成していることを示している。
論文 参考訳(メタデータ) (2025-04-04T04:41:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。