論文の概要: Strategic inputs: feature selection from game-theoretic perspective
- arxiv url: http://arxiv.org/abs/2510.24982v1
- Date: Tue, 28 Oct 2025 21:24:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-30 15:50:44.794256
- Title: Strategic inputs: feature selection from game-theoretic perspective
- Title(参考訳): ストラテジックインプット:ゲーム理論から見た特徴選択
- Authors: Chi Zhao, Jing Liu, Elena Parilina,
- Abstract要約: 本稿では,ゲーム理論に基づくデータのためのエンドツーエンドの特徴選択フレームワークを提案する。
提案フレームワークは, サンプル選択, ゲーム理論的特徴重要度評価, 冗長特徴除去, 最適化モデルトレーニングの4つのコアコンポーネントから構成される。
実験結果から,提案手法は予測性能を保ちながら大幅な低減を実現することが示された。
- 参考スコア(独自算出の注目度): 5.4663948527890485
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The exponential growth of data volumes has led to escalating computational costs in machine learning model training. However, many features fail to contribute positively to model performance while consuming substantial computational resources. This paper presents an end-to-end feature selection framework for tabular data based on game theory. We formulate feature selection procedure based on a cooperative game where features are modeled as players, and their importance is determined through the evaluation of synergistic interactions and marginal contributions. The proposed framework comprises four core components: sample selection, game-theoretic feature importance evaluation, redundant feature elimination, and optimized model training. Experimental results demonstrate that the proposed method achieves substantial computation reduction while preserving predictive performance, thereby offering an efficient solution of the computational challenges of large-scale machine learning. The source code is available at https://github.com/vectorsss/strategy_inputs.
- Abstract(参考訳): データボリュームの指数的な増加は、機械学習モデルのトレーニングにおける計算コストの増大につながった。
しかし、多くの機能は、実質的な計算資源を消費しながら、モデルの性能に肯定的な貢献をしなかった。
本稿では,ゲーム理論に基づく表型データのためのエンドツーエンドの特徴選択フレームワークを提案する。
特徴をプレイヤーとしてモデル化した協調ゲームに基づいて特徴選択手順を定式化し、その重要性は相乗的相互作用の評価と限界寄与によって決定される。
提案フレームワークは, サンプル選択, ゲーム理論的特徴重要度評価, 冗長特徴除去, 最適化モデルトレーニングの4つのコアコンポーネントから構成される。
実験により,提案手法は予測性能を保ちながら計算量削減を実現し,大規模機械学習における計算課題の効率的な解法を提供することを示した。
ソースコードはhttps://github.com/vectorsss/strategy_inputs.comで公開されている。
関連論文リスト
- SPaRFT: Self-Paced Reinforcement Fine-Tuning for Large Language Models [51.74498855100541]
大規模言語モデル(LLM)は、強化学習(RL)による微調整時に強い推論能力を示す。
トレーニング対象のモデルの性能に基づいて,効率的な学習を可能にする自己評価学習フレームワークである textbfSPaRFT を提案する。
論文 参考訳(メタデータ) (2025-08-07T03:50:48Z) - In2Core: Leveraging Influence Functions for Coreset Selection in Instruction Finetuning of Large Language Models [37.45103473809928]
In2Coreアルゴリズムは,トレーニングモデルと評価サンプルの相関関係を解析し,コアセットを選択する。
LLMの微調整データにアルゴリズムを適用することで、トレーニングデータの50%で同様の性能を実現することができる。
論文 参考訳(メタデータ) (2024-08-07T05:48:05Z) - Decomposing and Editing Predictions by Modeling Model Computation [75.37535202884463]
コンポーネントモデリングというタスクを導入します。
コンポーネントモデリングの目標は、MLモデルの予測をコンポーネントの観点から分解することだ。
コンポーネント属性を推定するスケーラブルなアルゴリズムであるCOARを提案する。
論文 参考訳(メタデータ) (2024-04-17T16:28:08Z) - IGANN Sparse: Bridging Sparsity and Interpretability with Non-linear Insight [4.010646933005848]
IGANN Sparseは、一般化された加法モデルのファミリーから生まれた、新しい機械学習モデルである。
トレーニング中の非線形特徴選択プロセスを通じて、スパシティを促進する。
これにより、予測性能を犠牲にすることなく、モデル空間の改善による解釈可能性を保証する。
論文 参考訳(メタデータ) (2024-03-17T22:44:36Z) - Green Runner: A tool for efficient deep learning component selection [0.76146285961466]
本稿では、自然言語で提供されるアプリケーションシナリオに基づいて、モデルを自動的に選択し、評価する新しいツールであるToolnameを提案する。
ツールネームは、問題に基づく制約とトレードオフをモデル選択プロセスに統合する、リソース効率のよい実験エンジンを備えている。
論文 参考訳(メタデータ) (2024-01-29T00:15:50Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
ケルネル学習とBayesian Spike-and-Slab pres (KBASS)に基づく新しい方程式探索法を提案する。
カーネルレグレッションを用いてターゲット関数を推定する。これはフレキシブルで表現力があり、データ空間やノイズに対してより堅牢である。
我々は,効率的な後部推論と関数推定のための予測伝搬予測最大化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-10-09T03:55:09Z) - Learning Active Subspaces and Discovering Important Features with Gaussian Radial Basis Functions Neural Networks [0.0]
モデルの訓練が完了すると抽出できる精度行列のスペクトルに含まれる貴重な情報を示す。
回帰,分類,特徴選択タスクの数値実験を行った。
その結果,提案モデルが競合モデルに比べて魅力的な予測性能が得られるだけでなく,予測性能も向上することが示唆された。
論文 参考訳(メタデータ) (2023-07-11T09:54:30Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
本稿では,CSUFS (Compactness Score) と呼ばれる高速な教師なし特徴選択手法を提案する。
提案アルゴリズムは既存のアルゴリズムよりも正確で効率的である。
論文 参考訳(メタデータ) (2022-01-31T13:01:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。