論文の概要: Vision-Language Integration for Zero-Shot Scene Understanding in Real-World Environments
- arxiv url: http://arxiv.org/abs/2510.25070v1
- Date: Wed, 29 Oct 2025 01:16:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-30 15:50:44.901351
- Title: Vision-Language Integration for Zero-Shot Scene Understanding in Real-World Environments
- Title(参考訳): 実環境におけるゼロショットシーン理解のための視覚言語統合
- Authors: Manjunath Prasad Holenarasipura Rajiv, B. M. Vidyavathi,
- Abstract要約: 本研究では,事前学習した視覚エンコーダと大規模言語モデルを統一する視覚言語統合フレームワークを提案する。
提案システムでは,トップ1の精度が最大18%向上し,セマンティック・コヒーレンス・メトリクスが顕著に向上した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Zero-shot scene understanding in real-world settings presents major challenges due to the complexity and variability of natural scenes, where models must recognize new objects, actions, and contexts without prior labeled examples. This work proposes a vision-language integration framework that unifies pre-trained visual encoders (e.g., CLIP, ViT) and large language models (e.g., GPT-based architectures) to achieve semantic alignment between visual and textual modalities. The goal is to enable robust zero-shot comprehension of scenes by leveraging natural language as a bridge to generalize over unseen categories and contexts. Our approach develops a unified model that embeds visual inputs and textual prompts into a shared space, followed by multimodal fusion and reasoning layers for contextual interpretation. Experiments on Visual Genome, COCO, ADE20K, and custom real-world datasets demonstrate significant gains over state-of-the-art zero-shot models in object recognition, activity detection, and scene captioning. The proposed system achieves up to 18% improvement in top-1 accuracy and notable gains in semantic coherence metrics, highlighting the effectiveness of cross-modal alignment and language grounding in enhancing generalization for real-world scene understanding.
- Abstract(参考訳): 実世界の設定におけるゼロショットシーン理解は、モデルが事前にラベル付けされた例なしで新しいオブジェクト、アクション、コンテキストを認識する必要がある自然のシーンの複雑さと可変性によって大きな課題を呈する。
本研究では,事前学習した視覚エンコーダ(例えばCLIP,ViT)と大規模言語モデル(例えばGPTベースのアーキテクチャ)を統合化して,視覚とテキスト間のセマンティックアライメントを実現する視覚言語統合フレームワークを提案する。
目的は、目に見えないカテゴリやコンテキストを一般化するブリッジとして自然言語を活用することで、シーンのゼロショットの堅牢な理解を可能にすることである。
提案手法では,視覚的な入力とテキストのプロンプトを共有空間に埋め込んだ統一モデルを構築し,その後にマルチモーダル融合と推論層を用いて文脈解釈を行う。
Visual Genome、COCO、ADE20K、カスタムリアルワールドデータセットの実験は、オブジェクト認識、アクティビティ検出、シーンキャプションにおける最先端のゼロショットモデルよりも大幅に向上したことを示している。
提案システムでは,トップ1の精度が最大で18%向上し,セマンティック・コヒーレンス・メトリクスの顕著な向上を実現し,実世界のシーン理解の一般化にクロスモーダルアライメントと言語基盤の有効性を強調した。
関連論文リスト
- Context-Aware Semantic Segmentation: Enhancing Pixel-Level Understanding with Large Language Models for Advanced Vision Applications [0.0]
本稿では,Large Language Models (LLM) と最先端のビジョンバックボーンを統合する新しいコンテキスト認識セマンティックフレームワークを提案する。
視覚と言語の特徴を整合させるクロスアテンションメカニズムを導入し、モデルがコンテキストをより効果的に推論できるようにする。
この研究は視覚と言語の間のギャップを埋め、自律運転、医療画像、ロボット工学などの応用における、よりインテリジェントでコンテキスト対応の視覚システムへの道を開く。
論文 参考訳(メタデータ) (2025-03-25T02:12:35Z) - Linguistics-aware Masked Image Modeling for Self-supervised Scene Text Recognition [50.86415025650168]
マスク付き画像モデリング(MIM)は、局所的な構造を利用して視覚パターンを再構築する傾向があり、言語知識は限られている。
本稿では,言語情報とMIMの復号過程を別ブランチで関連づける,言語学対応の仮面画像モデリング(LMIM)手法を提案する。
論文 参考訳(メタデータ) (2025-03-24T14:53:35Z) - Lyrics: Boosting Fine-grained Language-Vision Alignment and Comprehension via Semantic-aware Visual Objects [11.117055725415446]
LVLM(Large Vision Language Models)は、様々な視覚言語対話シナリオにおいて、印象的なゼロショット機能を示す。
きめ細かい視覚オブジェクト検出がないことは、画像の詳細を理解するのを妨げ、不可分な視覚幻覚や事実的誤りを引き起こす。
リリックス(Lyrics)は、視覚言語アライメントを微粒なクロスモーダル協調からブートストラップする、新しいマルチモーダル事前学習および微調整パラダイムである。
論文 参考訳(メタデータ) (2023-12-08T09:02:45Z) - Aligning and Prompting Everything All at Once for Universal Visual
Perception [79.96124061108728]
APEは、さまざまなタスクを実行するために、すべてのことを一度に調整し、促す、普遍的な視覚知覚モデルである。
APEは、言語誘導接地をオープン語彙検出として再構成することで、検出と接地の収束を推し進める。
160以上のデータセットの実験では、APEが最先端のモデルより優れていることが示されている。
論文 参考訳(メタデータ) (2023-12-04T18:59:50Z) - LanGWM: Language Grounded World Model [24.86620763902546]
我々は,世界モデル学習を強化するために,言語による視覚的特徴を学習することに注力する。
提案手法は,人間とロボットの相互作用モデルを改善する可能性を秘めている。
論文 参考訳(メタデータ) (2023-11-29T12:41:55Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
視覚シーンの構成的性質を観察し、推論する視覚システムは、我々の世界を理解するのに不可欠である。
モデルは、このようなモダリティと大規模なトレーニングデータとのギャップを埋めることを学び、コンテキスト推論、一般化、テスト時の迅速な機能を容易にした。
このようなモデルの出力は、例えば、バウンディングボックスを設けて特定のオブジェクトをセグメント化したり、画像や映像シーンについて質問したり、言語命令でロボットの動作を操作することで対話的な対話を行うなど、リトレーニングすることなく、人為的なプロンプトによって変更することができる。
論文 参考訳(メタデータ) (2023-07-25T17:59:18Z) - Perceptual Grouping in Contrastive Vision-Language Models [59.1542019031645]
画像内の物体の位置を視覚言語モデルで理解し,画像の視覚的関連部分をグループ化する方法について述べる。
本稿では,意味情報と空間情報の両方を一意に学習するモデルとして,最小限の修正を提案する。
論文 参考訳(メタデータ) (2022-10-18T17:01:35Z) - Fine-Grained Semantically Aligned Vision-Language Pre-Training [151.7372197904064]
大規模な視覚言語による事前学習は、幅広い下流タスクにおいて顕著な進歩を見せている。
既存の手法は主に、画像とテキストのグローバルな表現の類似性によって、モーダル間のアライメントをモデル化する。
ゲーム理論的相互作用の新たな視点から, 微粒なセマンティックアライメントを学習する, 微粒なセマンティックなvisiOn-langUage PrEトレーニングフレームワークであるLOを導入する。
論文 参考訳(メタデータ) (2022-08-04T07:51:48Z) - Sim-To-Real Transfer of Visual Grounding for Human-Aided Ambiguity
Resolution [0.0]
視覚的接地という課題について考察し, エージェントは, 混み合ったシーンからオブジェクトを抽出し, 自然言語で記述する。
視覚的接地に対する現代の全体論的アプローチは、言語構造を無視し、ジェネリックドメインをカバーするのに苦労する。
実体,属性,空間関係の合成視覚的グラウンド化のための,完全に分離されたモジュラー・フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-24T14:12:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。