論文の概要: ScaleDiff: Higher-Resolution Image Synthesis via Efficient and Model-Agnostic Diffusion
- arxiv url: http://arxiv.org/abs/2510.25818v1
- Date: Wed, 29 Oct 2025 17:17:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-31 16:05:09.511443
- Title: ScaleDiff: Higher-Resolution Image Synthesis via Efficient and Model-Agnostic Diffusion
- Title(参考訳): ScaleDiff: 効率的なモデル非依存拡散による高分解能画像合成
- Authors: Sungho Koh, SeungJu Cha, Hyunwoo Oh, Kwanyoung Lee, Dong-Jin Kim,
- Abstract要約: テキストと画像の拡散モデルは、トレーニングの解像度を超える画像を生成する際に、しばしば劣化した性能を示す。
最近のトレーニングフリーな手法は、この制限を緩和することができるが、かなりの計算を必要とする場合や、最近の拡散変換器モデルと互換性がない場合が多い。
本研究では,事前学習した拡散モデルの解法を,追加の訓練なしに拡張するためのモデル非依存かつ高効率なフレームワークであるScaleDiffを提案する。
- 参考スコア(独自算出の注目度): 7.233066974580282
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-image diffusion models often exhibit degraded performance when generating images beyond their training resolution. Recent training-free methods can mitigate this limitation, but they often require substantial computation or are incompatible with recent Diffusion Transformer models. In this paper, we propose ScaleDiff, a model-agnostic and highly efficient framework for extending the resolution of pretrained diffusion models without any additional training. A core component of our framework is Neighborhood Patch Attention (NPA), an efficient mechanism that reduces computational redundancy in the self-attention layer with non-overlapping patches. We integrate NPA into an SDEdit pipeline and introduce Latent Frequency Mixing (LFM) to better generate fine details. Furthermore, we apply Structure Guidance to enhance global structure during the denoising process. Experimental results demonstrate that ScaleDiff achieves state-of-the-art performance among training-free methods in terms of both image quality and inference speed on both U-Net and Diffusion Transformer architectures.
- Abstract(参考訳): テキストと画像の拡散モデルは、トレーニングの解像度を超える画像を生成する際に、しばしば劣化した性能を示す。
最近のトレーニングフリーな手法は、この制限を緩和することができるが、かなりの計算を必要とする場合や、最近の拡散変換器モデルと互換性がない場合が多い。
本稿では,事前学習した拡散モデルの分解能を拡張するためのモデルに依存しない,高効率なフレームワークであるScaleDiffを提案する。
我々のフレームワークの中核となるコンポーネントはNPA(Neighborhood Patch Attention)であり、非重複パッチで自己アテンション層における計算冗長性を減少させる効率的なメカニズムである。
NPAをSDEditパイプラインに統合し、詳細な情報を生成するためにLFM(Latent Frequency Mixing)を導入します。
さらに,デノナイジング過程におけるグローバルな構造向上のために,構造ガイダンスを適用した。
実験により,U-NetおよびDiffusion Transformerアーキテクチャにおける画像品質と推論速度の両面で,トレーニング不要な手法の最先端性能が得られた。
関連論文リスト
- Improving Progressive Generation with Decomposable Flow Matching [50.63174319509629]
Decomposable Flow Matching (DFM)は、ビジュアルメディアのプログレッシブな生成のためのシンプルで効果的なフレームワークである。
Imagenet-1k 512pxでは、DFMはベースアーキテクチャよりも35.2%改善され、ベースラインは26.4%向上した。
論文 参考訳(メタデータ) (2025-06-24T17:58:02Z) - One-Step Diffusion Model for Image Motion-Deblurring [85.76149042561507]
本稿では,脱臭過程を1段階に短縮する新しいフレームワークである脱臭拡散モデル(OSDD)を提案する。
拡散モデルにおける忠実度損失に対処するために,構造復元を改善する改良された変分オートエンコーダ(eVAE)を導入する。
提案手法は,実測値と非参照値の両方で高い性能を達成する。
論文 参考訳(メタデータ) (2025-03-09T09:39:57Z) - One Diffusion Step to Real-World Super-Resolution via Flow Trajectory Distillation [60.54811860967658]
FluxSRはフローマッチングモデルに基づく新しい一段階拡散リアルISRである。
まず,フロートラジェクトリ蒸留(FTD)を導入し,多段階のフローマッチングモデルを1段階のリアルISRに蒸留する。
第2に、画像リアリズムを改善し、生成画像の高周波アーティファクト問題に対処するために、テレビLPIPSを知覚的損失として提案する。
論文 参考訳(メタデータ) (2025-02-04T04:11:29Z) - FAM Diffusion: Frequency and Attention Modulation for High-Resolution Image Generation with Stable Diffusion [63.609399000712905]
スケールした解像度での推論は反復的なパターンと構造的歪みをもたらす。
これらの問題を解決するために組み合わせた2つの単純なモジュールを提案する。
我々の手法はファム拡散と呼ばれ、任意の潜在拡散モデルにシームレスに統合でき、追加の訓練を必要としない。
論文 参考訳(メタデータ) (2024-11-27T17:51:44Z) - Fixed Point Diffusion Models [13.035518953879539]
FPDM(Fixed Point Diffusion Model)は、FPDM(Fixed Point Diffusion Model)の概念を拡散に基づく生成モデルに組み込んだ画像生成手法である。
提案手法では,拡散モデルのデノナイズネットワークに暗黙の固定点解法層を埋め込み,拡散過程を密接な関係のある固定点問題列に変換する。
我々は、ImageNet、FFHQ、CelebA-HQ、LSUN-Churchの最先端モデルを用いて実験を行い、性能と効率を大幅に改善した。
論文 参考訳(メタデータ) (2024-01-16T18:55:54Z) - DiffiT: Diffusion Vision Transformers for Image Generation [88.08529836125399]
ViT(Vision Transformer)は、特に認識タスクにおいて、強力なモデリング機能とスケーラビリティを実証している。
拡散型生成学習におけるViTの有効性について検討し、拡散ビジョン変換器(DiffiT)と呼ばれる新しいモデルを提案する。
DiffiTはパラメータ効率が大幅に向上した高忠実度画像を生成するのに驚くほど効果的である。
論文 参考訳(メタデータ) (2023-12-04T18:57:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。