論文の概要: Analysis of the Robustness of an Edge Detector Based on Cellular Automata Optimized by Particle Swarm
- arxiv url: http://arxiv.org/abs/2510.26509v1
- Date: Thu, 30 Oct 2025 14:03:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-31 16:05:09.846355
- Title: Analysis of the Robustness of an Edge Detector Based on Cellular Automata Optimized by Particle Swarm
- Title(参考訳): 粒子群最適化セルオートマタによるエッジ検出器のロバスト性の解析
- Authors: Vinícius Ferraria, Eurico Ruivo,
- Abstract要約: エッジ検出タスクは、画像から関連情報を抽出することを目的とした画像処理において不可欠である。
2次元セルオートマトンにより記述され,メタヒューリスティックと転写学習技術を組み合わせて最適化された適応型検出器を開発した。
本研究の目的は,一組の自然画像のエッジと同一画像集合から抽出した特殊部分集合の同定における,最適位相の探索空間の拡大と検出器の頑健性の影響を解析することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The edge detection task is essential in image processing aiming to extract relevant information from an image. One recurring problem in this task is the weaknesses found in some detectors, such as the difficulty in detecting loose edges and the lack of context to extract relevant information from specific problems. To address these weaknesses and adapt the detector to the properties of an image, an adaptable detector described by two-dimensional cellular automaton and optimized by meta-heuristic combined with transfer learning techniques was developed. This study aims to analyze the impact of expanding the search space of the optimization phase and the robustness of the adaptability of the detector in identifying edges of a set of natural images and specialized subsets extracted from the same image set. The results obtained prove that expanding the search space of the optimization phase was not effective for the chosen image set. The study also analyzed the adaptability of the model through a series of experiments and validation techniques and found that, regardless of the validation, the model was able to adapt to the input and the transfer learning techniques applied to the model showed no significant improvements.
- Abstract(参考訳): エッジ検出タスクは、画像から関連情報を抽出することを目的とした画像処理において不可欠である。
このタスクで繰り返し発生する問題のひとつは、ゆるいエッジの検出の困難さや、特定の問題から関連する情報を抽出するコンテキストの欠如など、いくつかの検出器で見られる弱点である。
これらの弱点に対処し、画像の特性に適応するため、2次元セルオートマトンで記述され、メタヒューリスティックと転写学習技術を組み合わせて最適化された適応型検出器を開発した。
本研究の目的は,一組の自然画像と同一画像集合から抽出した特殊部分集合のエッジを識別する際の,最適位相の探索空間の拡大と検出器の適合性の堅牢性の影響を解析することである。
その結果、最適化フェーズの探索空間の拡大は、選択した画像集合に対して有効でないことが証明された。
また,一連の実験および検証手法を用いてモデルの適応性を解析し,検証によらず,モデルが入力に適応し,モデルに適用した伝達学習技術は有意な改善を示さなかったことを見出した。
関連論文リスト
- Rethinking Contrastive Learning in Graph Anomaly Detection: A Clean-View Perspective [54.605073936695575]
グラフ異常検出は、Webセキュリティやファイナンシャル不正検出などの分野で広く応用されているグラフベースのデータにおいて、異常なパターンを特定することを目的としている。
既存の手法は対照的な学習に依存しており、ノードとその局所部分グラフの間のより低い類似性は異常を示すと仮定する。
干渉エッジの存在は、対照的な学習過程を損なう破壊的なノイズをもたらすため、この仮定を無効にする。
コントラスト学習プロセスにおいて重要な干渉源を特定するために,複数スケールの異常認識モジュールを含むクリーンビュー拡張グラフ異常検出フレームワーク(CVGAD)を提案する。
論文 参考訳(メタデータ) (2025-05-23T15:05:56Z) - A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
本稿では,統計的特徴選択と分類技術を統合し,欠陥検出精度を向上させるハイブリッドフレームワークを提案する。
工業画像から抽出した55個の特徴を統計的手法を用いて解析した。
これらの手法をフレキシブルな機械学習アプリケーションに統合することにより、検出精度を改善し、偽陽性や誤分類を減らす。
論文 参考訳(メタデータ) (2024-12-11T22:12:21Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [81.93945602120453]
本稿では,顔偽造検出に汎用的かつパラメータ効率の高い手法を提案する。
フォージェリー・ソース・ドメインの多様性を増大させるフォージェリー・ミックス・フォーミュレーションを設計する。
設計したモデルは、トレーニング可能なパラメータを著しく減らし、最先端の一般化性を実現する。
論文 参考訳(メタデータ) (2024-08-23T01:53:36Z) - Overcoming Scene Context Constraints for Object Detection in wild using Defilters [3.038642416291856]
物体検出、認識、セグメンテーションなどの高レベルのコンピュータビジョンタスクは、特に画像歪みに敏感である。
物体検出に先立って画像歪みを補正する画像デファイラを提案する。
この方法では、非歪画像のトレーニング時にモデルが最適に実行されるため、オブジェクト検出精度が向上する。
論文 参考訳(メタデータ) (2024-04-12T07:30:52Z) - Forgery-aware Adaptive Transformer for Generalizable Synthetic Image
Detection [106.39544368711427]
本研究では,様々な生成手法から偽画像を検出することを目的とした,一般化可能な合成画像検出の課題について検討する。
本稿では,FatFormerという新しいフォージェリー適応トランスフォーマー手法を提案する。
提案手法は, 平均98%の精度でGANを観測し, 95%の精度で拡散モデルを解析した。
論文 参考訳(メタデータ) (2023-12-27T17:36:32Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Self-Calibrating Anomaly and Change Detection for Autonomous Inspection
Robots [0.07366405857677225]
視覚異常または変化検出アルゴリズムは、参照画像やデータセットとは異なる画像の領域を特定する。
本研究では,事前の未知環境における異常や変化を検出するための総合的なディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-26T09:52:12Z) - Adaptive Remote Sensing Image Attribute Learning for Active Object
Detection [43.029857143916345]
本稿では,適応的な明るさ調整とスケール調整を例に,深層強化学習に基づくアクティブ物体検出手法を提案する。
適応画像属性学習の目標は、検出性能を最大化することです。
論文 参考訳(メタデータ) (2021-01-16T11:37:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。