論文の概要: Relation-Aware Bayesian Optimization of DBMS Configurations Guided by Affinity Scores
- arxiv url: http://arxiv.org/abs/2510.27145v1
- Date: Fri, 31 Oct 2025 03:46:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-03 17:52:15.968035
- Title: Relation-Aware Bayesian Optimization of DBMS Configurations Guided by Affinity Scores
- Title(参考訳): アフィニティスコアによるDBMS構成のリレーショナルベイズ最適化
- Authors: Sein Kwon, Seulgi Baek, Hyunseo Yang, Youngwan Jo, Sanghyun Park,
- Abstract要約: データベース管理システム(DBMS)は,大規模および異種データの管理に基本的であり,その性能は構成パラメータの影響を強く受けている。
近年の研究では、機械学習を用いた自動構成最適化に焦点が当てられているが、既存のアプローチにはいくつかの重要な制限がある。
パラメータ依存をグラフとして表現する新しいフレームワークであるRelTuneを提案し,パフォーマンス関連セマンティクスを符号化したGNNベースの潜伏埋め込みを学習する。
- 参考スコア(独自算出の注目度): 2.474203056060563
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Database Management Systems (DBMSs) are fundamental for managing large-scale and heterogeneous data, and their performance is critically influenced by configuration parameters. Effective tuning of these parameters is essential for adapting to diverse workloads and maximizing throughput while minimizing latency. Recent research has focused on automated configuration optimization using machine learning; however, existing approaches still exhibit several key limitations. Most tuning frameworks disregard the dependencies among parameters, assuming that each operates independently. This simplification prevents optimizers from leveraging relational effects across parameters, limiting their capacity to capture performancesensitive interactions. Moreover, to reduce the complexity of the high-dimensional search space, prior work often selects only the top few parameters for optimization, overlooking others that contribute meaningfully to performance. Bayesian Optimization (BO), the most common method for automatic tuning, is also constrained by its reliance on surrogate models, which can lead to unstable predictions and inefficient exploration. To overcome these limitations, we propose RelTune, a novel framework that represents parameter dependencies as a Relational Graph and learns GNN-based latent embeddings that encode performancerelevant semantics. RelTune further introduces Hybrid-Score-Guided Bayesian Optimization (HBO), which combines surrogate predictions with an Affinity Score measuring proximity to previously high-performing configurations. Experimental results on multiple DBMSs and workloads demonstrate that RelTune achieves faster convergence and higher optimization efficiency than conventional BO-based methods, achieving state-of-the-art performance across all evaluated scenarios.
- Abstract(参考訳): データベース管理システム(DBMS)は,大規模および異種データの管理に基本的であり,その性能は構成パラメータの影響を強く受けている。
これらのパラメータの効果的なチューニングは、さまざまなワークロードへの適応とスループットの最大化とレイテンシの最小化に不可欠である。
近年の研究では、機械学習を用いた自動構成最適化に焦点が当てられているが、既存のアプローチにはいくつかの重要な制限がある。
ほとんどのチューニングフレームワークは、それぞれが独立して動作すると仮定して、パラメータ間の依存関係を無視している。
この単純化により、オプティマイザはパラメータ間のリレーショナルエフェクトを活用することができなくなり、パフォーマンスに敏感なインタラクションをキャプチャする能力が制限される。
さらに、高次元探索空間の複雑さを軽減するために、事前の作業は、性能に有意義な貢献をする他のものを見越して、最適化のための最上位のパラメータのみを選択することが多い。
自動チューニングの最も一般的な方法であるベイズ最適化(BO)は、サロゲートモデルに依存しているため、不安定な予測や非効率な探索につながる可能性がある。
この制限を克服するため、RelTuneはパラメータ依存をリレーショナルグラフとして表現し、性能関連セマンティクスをエンコードするGNNベースの潜伏埋め込みを学習する新しいフレームワークである。
RelTuneはさらにHybrid-Score-Guided Bayesian Optimization (HBO)を導入している。
複数のDBMSとワークロードの実験結果から、RelTuneは従来のBOベースの手法よりも高速な収束と最適化効率を実現し、すべての評価シナリオで最先端のパフォーマンスを実現していることが示された。
関連論文リスト
- Optuna vs Code Llama: Are LLMs a New Paradigm for Hyperparameter Tuning? [45.58422897857411]
この研究は、LoRAを用いてパラメータ効率の良いCode Llamaを微調整することで、ハイパーパラメータ最適化のための大規模言語モデル(LLM)の使用について検討する。
提案手法は,計算オーバーヘッドを大幅に削減しつつ,競合的あるいは優れたRoot Mean Square Error(RMSE)を実現する。
その結果,LLMに基づく最適化によって,木構造型パーゼンエミュレータ (TPE) のようなベイズ的手法が確立されただけでなく,知覚品質と低レイテンシ処理を必要とする実世界のアプリケーションへのチューニングが高速化された。
論文 参考訳(メタデータ) (2025-04-08T13:15:47Z) - ALoRE: Efficient Visual Adaptation via Aggregating Low Rank Experts [71.91042186338163]
ALoREは、Kroneckerによって構築された超複素パラメータ化空間をAggregate Low Rank Expertsに再利用する新しいPETL法である。
巧妙な設計のおかげで、ALoREは無視できる余分なパラメータを保持し、凍ったバックボーンに強制的にマージできる。
論文 参考訳(メタデータ) (2024-12-11T12:31:30Z) - Controllable Prompt Tuning For Balancing Group Distributional Robustness [53.336515056479705]
グループ間で優れたパフォーマンスを実現するための最適化スキームを導入し、それらの性能を著しく犠牲にすることなく、全員に良い解決策を見出す。
本稿では,制御可能なプロンプトチューニング(CPT)を提案する。
突発的相関ベンチマークでは, 変換器と非変換器の両アーキテクチャ, および非モーダルおよびマルチモーダルデータにまたがって, 最先端の結果が得られた。
論文 参考訳(メタデータ) (2024-03-05T06:23:55Z) - A Unified Gaussian Process for Branching and Nested Hyperparameter
Optimization [19.351804144005744]
ディープラーニングでは、条件に依存したパラメータのチューニングが一般的に行われている。
新しいGPモデルでは、新しいカーネル関数を通じて入力変数間の依存構造が説明される。
ニューラルネットワークの一連の合成シミュレーションおよび実データ応用において、高い予測精度とより良い最適化効率が観察される。
論文 参考訳(メタデータ) (2024-01-19T21:11:32Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
フェデレートラーニング(FL)は、分散データとの協調モデルトレーニングを可能にする、有望なパラダイムである。
LLM(Large Language Models)のトレーニングプロセスは一般的に重要なパラメータの更新を引き起こす。
本稿では,性能と効率を同時に向上する効率的な部分的プロンプトチューニング手法を提案する。
論文 参考訳(メタデータ) (2023-10-23T16:37:59Z) - Consolidated learning -- a domain-specific model-free optimization
strategy with examples for XGBoost and MIMIC-IV [4.370097023410272]
本稿では,統合学習と呼ばれるチューニング問題の新たな定式化を提案する。
このような設定では、単一のタスクをチューニングするよりも、全体の最適化時間に関心があります。
我々は,XGBoostアルゴリズムの実証研究とMIMIC-IV医療データベースから抽出した予測タスクの収集を通じて,このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-01-27T21:38:53Z) - Pre-trained Gaussian Processes for Bayesian Optimization [24.730678780782647]
本稿では,HyperBO という事前学習型 BO フレームワークを提案する。
GPが既知の「地中真実」を仮定することなく, 後続の予測と, ほぼゼロの後悔をHyperBOに示す。
論文 参考訳(メタデータ) (2021-09-16T20:46:26Z) - Amortized Auto-Tuning: Cost-Efficient Transfer Optimization for
Hyperparameter Recommendation [83.85021205445662]
本稿では,機械学習モデルのチューニングを高速化する自動チューニング(AT2)を提案する。
マルチタスクマルチ忠実ベイズ最適化フレームワークの徹底的な解析を行い、最適なインスタンス化-アモータイズ自動チューニング(AT2)を実現する。
論文 参考訳(メタデータ) (2021-06-17T00:01:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。