論文の概要: Mask-to-Height: A YOLOv11-Based Architecture for Joint Building Instance Segmentation and Height Classification from Satellite Imagery
- arxiv url: http://arxiv.org/abs/2510.27224v1
- Date: Fri, 31 Oct 2025 06:37:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-03 17:52:16.007854
- Title: Mask-to-Height: A YOLOv11-Based Architecture for Joint Building Instance Segmentation and Height Classification from Satellite Imagery
- Title(参考訳): Mask-to-Height: 衛星画像からの連立建物のセグメンテーションと高さ分類のためのYOLOv11ベースのアーキテクチャ
- Authors: Mahmoud El Hussieni, Bahadır K. Güntürk, Hasan F. Ateş, Oğuz Hanoğlu,
- Abstract要約: 本稿では,最近のYOLOシリーズの深層学習モデルの進歩であるYOLOv11の詳細な分析について述べる。
YOLOv11は、より効率的なアーキテクチャを導入することで、初期のYOLOモデルの長所の上に構築されている。
我々は,精度,リコール,F1スコア,平均平均精度(mAP)などの指標を用いて,YOLOv11の性能を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate building instance segmentation and height classification are critical for urban planning, 3D city modeling, and infrastructure monitoring. This paper presents a detailed analysis of YOLOv11, the recent advancement in the YOLO series of deep learning models, focusing on its application to joint building extraction and discrete height classification from satellite imagery. YOLOv11 builds on the strengths of earlier YOLO models by introducing a more efficient architecture that better combines features at different scales, improves object localization accuracy, and enhances performance in complex urban scenes. Using the DFC2023 Track 2 dataset -- which includes over 125,000 annotated buildings across 12 cities -- we evaluate YOLOv11's performance using metrics such as precision, recall, F1 score, and mean average precision (mAP). Our findings demonstrate that YOLOv11 achieves strong instance segmentation performance with 60.4\% mAP@50 and 38.3\% mAP@50--95 while maintaining robust classification accuracy across five predefined height tiers. The model excels in handling occlusions, complex building shapes, and class imbalance, particularly for rare high-rise structures. Comparative analysis confirms that YOLOv11 outperforms earlier multitask frameworks in both detection accuracy and inference speed, making it well-suited for real-time, large-scale urban mapping. This research highlights YOLOv11's potential to advance semantic urban reconstruction through streamlined categorical height modeling, offering actionable insights for future developments in remote sensing and geospatial intelligence.
- Abstract(参考訳): 正確な建物のインスタンス分割と高さ分類は、都市計画、3次元都市モデリング、インフラ監視において重要である。
本稿では, YOLOv11の詳細な解析を行い, 衛星画像からの連立建物抽出と離散高さ分類への応用に焦点をあてる。
YOLOv11は、より効率的なアーキテクチャを導入し、さまざまなスケールの機能をうまく組み合わせ、オブジェクトのローカライゼーションの精度を改善し、複雑な都市シーンのパフォーマンスを向上させる。
DFC2023 Track 2データセット(12都市に125,000以上のアノテートされた建物を含む)を使用し、精度、リコール、F1スコア、平均平均精度(mAP)などの指標を用いてYOLOv11のパフォーマンスを評価した。
その結果, YOLOv11は60.4 % mAP@50 と38.3 % mAP@50--95 のインスタンスセグメンテーション性能を達成し, 5 つの事前定義された高さ層で頑健な分類精度を維持した。
このモデルは、特に稀な高層建築物において、閉塞、複雑な建物の形状、およびクラス不均衡を扱うのに優れている。
比較分析により、YOLOv11は検出精度と推論速度の両方で従来のマルチタスクフレームワークよりも優れており、リアルタイムで大規模な都市マッピングに適していることが確認された。
本研究は, リモートセンシングと地理空間知能の今後の発展に有効な洞察を提供するため, 合理的な分類的高さモデリングにより, セマンティックな都市復興を推し進めるYOLOv11の可能性を強調した。
関連論文リスト
- Detect Anything via Next Point Prediction [51.55967987350882]
Rex-Omniは最先端の物体認識性能を実現する3BスケールのMLLMである。
COCOやLVISのようなベンチマークでは、Rex-Omniは回帰ベースのモデルに匹敵するパフォーマンスを得る。
論文 参考訳(メタデータ) (2025-10-14T17:59:54Z) - SpatialLadder: Progressive Training for Spatial Reasoning in Vision-Language Models [73.19077622773075]
本稿では,空間知能を段階的に構築するための包括的方法論を提案する。
オブジェクトローカライゼーション、単一画像、マルチビュー、ビデオ空間推論タスクにまたがる26,610のサンプルを含むマルチモーダルデータセットであるSpatialLadder-26kを紹介する。
本研究では,物体の局所化による空間知覚の確立,多次元空間的タスクによる空間理解の発達,および検証可能な報酬を用いた強化学習による複雑な推論の強化を目的とした3段階のプログレッシブ・トレーニング・フレームワークを設計する。
論文 参考訳(メタデータ) (2025-10-09T17:50:54Z) - YOLOv13: Real-Time Object Detection with Hypergraph-Enhanced Adaptive Visual Perception [58.06752127687312]
高精度で軽量な物体検出器YOLOv13を提案する。
ハイパーグラフに基づく適応相関強化(HyperACE)機構を提案する。
また,FullPAD(Full-Pipeline Aggregation-and-Distribution)パラダイムを提案する。
論文 参考訳(メタデータ) (2025-06-21T15:15:03Z) - Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation [67.23953699167274]
自己教師付き学習(SSL)により、地球観測のための視覚基盤モデルの開発が可能になった。
EOでは、この課題は衛星画像に共通する冗長性と重尾分布によって増幅される。
本稿では,データセットの多様性とバランスを最大化し,SSL事前トレーニングを改善するために設計された動的データセットプルーニング戦略を提案する。
論文 参考訳(メタデータ) (2025-04-09T15:13:26Z) - YOLOv12: A Breakdown of the Key Architectural Features [0.5639904484784127]
YOLOv12は、単一ステージのリアルタイム物体検出において重要な進歩である。
最適化されたバックボーン(R-ELAN)、分離可能な7x7の畳み込み、およびFlashAttention駆動のエリアベースアテンションが組み込まれている。
レイテンシに敏感なアプリケーションと高精度なアプリケーションの両方にスケーラブルなソリューションを提供する。
論文 参考訳(メタデータ) (2025-02-20T17:08:43Z) - YOLO Evolution: A Comprehensive Benchmark and Architectural Review of YOLOv12, YOLO11, and Their Previous Versions [0.0]
本研究は, YOLOv3から最新のYOLOv12への包括的実験評価である。
考慮すべき課題は、さまざまなオブジェクトサイズ、多様なアスペクト比、単一クラスの小さなオブジェクトである。
分析では各YOLOバージョンの特徴的長所と短所を強調した。
論文 参考訳(メタデータ) (2024-10-31T20:45:00Z) - YOLOv11: An Overview of the Key Architectural Enhancements [0.5639904484784127]
本稿では、オブジェクト検出、インスタンスセグメンテーション、ポーズ推定、オブジェクト指向オブジェクト検出(OBB)など、さまざまなコンピュータビジョンタスクにまたがるYOLOv11の拡張機能について検討する。
本稿では,パラメータ数と精度のトレードオフに着目し,平均精度(mAP)と計算効率の両面からモデルの性能改善を概観する。
我々の研究は、オブジェクト検出の広い視野におけるYOLOv11の位置と、リアルタイムコンピュータビジョンアプリケーションに対する潜在的な影響についての洞察を提供する。
論文 参考訳(メタデータ) (2024-10-23T09:55:22Z) - Semi-supervised Learning from Street-View Images and OpenStreetMap for
Automatic Building Height Estimation [59.6553058160943]
本稿では,Mapillary SVIとOpenStreetMapのデータから建物の高さを自動的に推定する半教師付き学習(SSL)手法を提案する。
提案手法は, 平均絶対誤差(MAE)が約2.1mである建物の高さを推定する上で, 明らかな性能向上につながる。
予備結果は,低コストなVGIデータに基づく提案手法のスケールアップに向けた今後の取り組みを期待し,動機づけるものである。
論文 参考訳(メタデータ) (2023-07-05T18:16:30Z) - A CNN regression model to estimate buildings height maps using
Sentinel-1 SAR and Sentinel-2 MSI time series [0.0]
本研究では,Sentinel-1 (S1) とSentinel-2 (S2) の時系列を用いて,ビルの高さを空間分解能10mで推定するための教師付きマルチモーダルビルディングハイトネットワーク (MBHR-Net) を提案する。
我々のMBHR-Netは,S1画像とS2画像から意味のある特徴を抽出し,画像パターンと建築高さの複雑な時間的関係を学習することを目的としている。
モデルはオランダのRoot Mean Squared Error(RMSE)、Intersection over Union(IoU)、R-squared(R2)の10都市でトレーニングされ、テストされる。
論文 参考訳(メタデータ) (2023-07-03T22:16:17Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
小型ターゲット検出のためのシンプルで高速で効率的なネットワークであるYOLO-Sを提案する。
YOLO-SはDarknet20をベースとした小さな特徴抽出器と、バイパスと連結の両方を通じて接続をスキップする。
YOLO-Sはパラメータサイズが87%減少し、約半分のFLOPがYOLOv3となり、低消費電力の産業用アプリケーションに実用化された。
論文 参考訳(メタデータ) (2022-04-05T16:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。