論文の概要: Continuous Autoregressive Language Models
- arxiv url: http://arxiv.org/abs/2510.27688v1
- Date: Fri, 31 Oct 2025 17:58:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-03 17:52:16.198382
- Title: Continuous Autoregressive Language Models
- Title(参考訳): 継続的自己回帰型言語モデル
- Authors: Chenze Shao, Darren Li, Fandong Meng, Jie Zhou,
- Abstract要約: 我々はCALM(Continuous Autoregressive Language Models)を紹介する。
CALMは高忠実度オートエンコーダを使用して、Kトークンの塊を1つの連続ベクトルに圧縮する。
我々は、堅牢なトレーニング、評価、および制御可能なサンプリングを可能にする包括的可能性のないフレームワークを開発する。
- 参考スコア(独自算出の注目度): 56.49239051750678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The efficiency of large language models (LLMs) is fundamentally limited by their sequential, token-by-token generation process. We argue that overcoming this bottleneck requires a new design axis for LLM scaling: increasing the semantic bandwidth of each generative step. To this end, we introduce Continuous Autoregressive Language Models (CALM), a paradigm shift from discrete next-token prediction to continuous next-vector prediction. CALM uses a high-fidelity autoencoder to compress a chunk of K tokens into a single continuous vector, from which the original tokens can be reconstructed with over 99.9\% accuracy. This allows us to model language as a sequence of continuous vectors instead of discrete tokens, which reduces the number of generative steps by a factor of K. The paradigm shift necessitates a new modeling toolkit; therefore, we develop a comprehensive likelihood-free framework that enables robust training, evaluation, and controllable sampling in the continuous domain. Experiments show that CALM significantly improves the performance-compute trade-off, achieving the performance of strong discrete baselines at a significantly lower computational cost. More importantly, these findings establish next-vector prediction as a powerful and scalable pathway towards ultra-efficient language models. Code: https://github.com/shaochenze/calm. Project: https://shaochenze.github.io/blog/2025/CALM.
- Abstract(参考訳): 大規模言語モデル(LLM)の効率は、その逐次的トークン・バイ・トークン生成プロセスによって根本的に制限される。
このボトルネックを克服するには、LLMスケーリングのための新しい設計軸が必要である、と我々は主張する。
この目的のために、離散的な次トーケン予測から連続的な次ベクター予測へのパラダイムシフトであるCALM(Continuous Autoregressive Language Models)を導入する。
CALMは高忠実度オートエンコーダを使用してKトークンの塊を1つの連続ベクトルに圧縮し、元のトークンを99.9倍の精度で再構成することができる。
これにより、離散トークンではなく連続ベクトルの列として言語をモデル化し、K因子による生成ステップの数を削減し、新しいモデリングツールキットを必要とする。
実験の結果,CALMは性能・計算トレードオフを著しく改善し,高い離散ベースラインの性能を計算コストで著しく向上させることがわかった。
さらに重要なこととして、これらの発見は超効率的な言語モデルへの強力でスケーラブルな経路として、次のベクター予測を確立している。
コード:https://github.com/shaochenze/calm。
プロジェクト: https://shaochenze.github.io/blog/2025/CALM
関連論文リスト
- Finish First, Perfect Later: Test-Time Token-Level Cross-Validation for Diffusion Large Language Models [47.5976588836299]
拡散大言語モデル(dLLM)は、並列デコーディングの高速化や双方向コンテキストモデリングといった利点を提供する。
離散dLLMにおけるバニラデコーディング戦略は、重要な制限に悩まされる。トークンが受け入れられると、後続のステップで修正することはできない。
予測トークン間のクロスバリデーションを利用するトレーニングフリーなデコーディング戦略であるToleratorを提案する。
論文 参考訳(メタデータ) (2025-10-06T17:56:46Z) - Latent Thought Models with Variational Bayes Inference-Time Computation [52.63299874322121]
ラテント思考モデル(LTM)は、ラテント空間における明示的な事前モデルに従う明示的なラテント思考ベクトルを包含する。
LTMは自己回帰モデルや離散拡散モデルよりも優れたサンプルおよびパラメータ効率を示す。
論文 参考訳(メタデータ) (2025-02-03T17:50:34Z) - Faster Language Models with Better Multi-Token Prediction Using Tensor Decomposition [5.575078692353885]
本稿では, 精度を損なうことなくサンプリング効率を向上させることを目的とした, 変圧器のマルチトークン予測のための新しいモデルを提案する。
階数=r$標準確率分解に一般化することにより、複数のトークンを同時に予測する改良されたモデルを開発する。
論文 参考訳(メタデータ) (2024-10-23T11:06:36Z) - Exact Byte-Level Probabilities from Tokenized Language Models for FIM-Tasks and Model Ensembles [23.134664392314264]
トークン化は、言語モデル(LM)における多くの未理解の欠点と関連している。
本研究は, トークン化がモデルとバイトレベルのモデルを比較し比較することによって, モデル性能に与える影響について検討する。
本稿では,学習トークン分布と等価バイトレベル分布とのマッピングを確立するフレームワークであるByte-Token Representation Lemmaを紹介する。
論文 参考訳(メタデータ) (2024-10-11T23:30:42Z) - Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines [74.42485647685272]
GMLM(Generative Masked Language Models)に焦点を当てる。
我々は,マルコフ連鎖の入力として使用されるマスキングにより,データ分布の条件付き確率に適合するモデルを訓練し,モデルからサンプルを抽出する。
我々は,T5モデルを並列デコーディングに適応させ,最小品質の犠牲を伴って機械翻訳における2~3倍の高速化を実現した。
論文 参考訳(メタデータ) (2024-07-22T18:00:00Z) - Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration [54.897493351694195]
本稿では,複数連続するトークンを1つのフォワードパスで同時に復号する,新しい並列復号法,すなわちthithidden Transferを提案する。
加速度測定では,Medusa や Self-Speculative decoding など,単モデル加速技術よりも優れています。
論文 参考訳(メタデータ) (2024-04-18T09:17:06Z) - Confident Adaptive Language Modeling [95.45272377648773]
CALMは、入力と生成時間ごとに異なる量の計算を動的に割り当てるフレームワークである。
ハイパフォーマンスを確実に維持しつつ、計算能力、潜在的スピードアップを最大3ドルまで削減する上で、我々のフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2022-07-14T17:00:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。