論文の概要: From Evidence to Verdict: An Agent-Based Forensic Framework for AI-Generated Image Detection
- arxiv url: http://arxiv.org/abs/2511.00181v1
- Date: Fri, 31 Oct 2025 18:36:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-05 16:37:26.656561
- Title: From Evidence to Verdict: An Agent-Based Forensic Framework for AI-Generated Image Detection
- Title(参考訳): 証拠から判断へ:AI生成画像検出のためのエージェントベースの法医学的フレームワーク
- Authors: Mengfei Liang, Yiting Qu, Yukun Jiang, Michael Backes, Yang Zhang,
- Abstract要約: AIFo(Agent-based Image Forensics)は、マルチエージェントコラボレーションによる人間の法医学的調査をエミュレートする、トレーニング不要のフレームワークである。
従来の手法とは異なり,本フレームワークでは,リバース画像検索,メタデータ抽出,事前学習型分類器,VLM解析など,一連の法医学的ツールを用いている。
我々の総合的な評価は6000のイメージに及び、現代の生成プラットフォームや多様なオンラインソースの画像を含む現実世界のシナリオに挑戦する。
- 参考スコア(独自算出の注目度): 19.240335260177382
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The rapid evolution of AI-generated images poses unprecedented challenges to information integrity and media authenticity. Existing detection approaches suffer from fundamental limitations: traditional classifiers lack interpretability and fail to generalize across evolving generative models, while vision-language models (VLMs), despite their promise, remain constrained to single-shot analysis and pixel-level reasoning. To address these challenges, we introduce AIFo (Agent-based Image Forensics), a novel training-free framework that emulates human forensic investigation through multi-agent collaboration. Unlike conventional methods, our framework employs a set of forensic tools, including reverse image search, metadata extraction, pre-trained classifiers, and VLM analysis, coordinated by specialized LLM-based agents that collect, synthesize, and reason over cross-source evidence. When evidence is conflicting or insufficient, a structured multi-agent debate mechanism allows agents to exchange arguments and reach a reliable conclusion. Furthermore, we enhance the framework with a memory-augmented reasoning module that learns from historical cases to improve future detection accuracy. Our comprehensive evaluation spans 6,000 images across both controlled laboratory settings and challenging real-world scenarios, including images from modern generative platforms and diverse online sources. AIFo achieves 97.05% accuracy, substantially outperforming traditional classifiers and state-of-the-art VLMs. These results demonstrate that agent-based procedural reasoning offers a new paradigm for more robust, interpretable, and adaptable AI-generated image detection.
- Abstract(参考訳): AI生成画像の急速な進化は、情報の完全性やメディアの信頼性に前例のない課題をもたらす。
従来の分類器は解釈可能性に欠け、進化する生成モデルにまたがる一般化に失敗するが、視覚言語モデル(VLM)は約束に反して単発解析やピクセルレベルの推論に制約される。
これらの課題に対処するため,AIFo (Agent-based Image Forensics)を導入した。
従来の手法とは異なり,我々のフレームワークでは,リバース画像検索,メタデータ抽出,事前学習した分類器,VLM分析など,クロスソース証拠の収集,合成,推論を行う特殊なLCMエージェントによって調整された,一連の法医学的ツールを用いている。
証拠が矛盾したり不十分な場合、構造化されたマルチエージェントの議論機構により、エージェントは議論を交換し、信頼できる結論に達することができる。
さらに,過去の事例から学習し,将来の検出精度を向上させるメモリ拡張推論モジュールによりフレームワークを強化した。
総合的な評価は、コントロールされた実験室の設定と、現代の生成プラットフォームや多様なオンラインソースの画像を含む現実世界のシナリオの両方にわたる6,000のイメージにまたがる。
AIFoは97.05%の精度を達成し、従来の分類器や最先端のVLMよりも大幅に優れている。
これらの結果は、エージェントベースの手続き推論が、より堅牢で、解釈可能で、適応可能なAI生成画像検出のための新しいパラダイムを提供することを示している。
関連論文リスト
- ThinkFake: Reasoning in Multimodal Large Language Models for AI-Generated Image Detection [51.93101033997245]
AI生成画像のリアリズムの増大は、誤情報やプライバシー侵害に対する深刻な懸念を引き起こしている。
我々は、AI生成画像検出のための新しい推論に基づく一般化可能なフレームワークThinkFakeを提案する。
我々は、ThinkFakeがGenImageベンチマークで最先端の手法より優れており、挑戦的なLOKIベンチマークで強力なゼロショットの一般化を示すことを示す。
論文 参考訳(メタデータ) (2025-09-24T07:34:09Z) - Semantic-Aware Reconstruction Error for Detecting AI-Generated Images [22.83053631078616]
本稿では,画像とキャプション誘導再構成のセマンティック・アウェア・リコンストラクション・エラー(SARE)を計測する新しい表現を提案する。
SAREは、さまざまな生成モデル間で偽画像を検出するための堅牢で差別的な機能を提供する。
また,SAREを背骨検出器に統合する融合モジュールを,クロスアテンション機構を介して導入する。
論文 参考訳(メタデータ) (2025-08-13T04:37:36Z) - ForensicsSAM: Toward Robust and Unified Image Forgery Detection and Localization Resisting to Adversarial Attack [56.0056378072843]
高い転送性を持つ逆画像は上流モデルでのみ作成可能であることを示す。
本稿では,IFDLフレームワークを組み込んだForensicsSAMを提案する。
論文 参考訳(メタデータ) (2025-08-10T16:03:44Z) - ForenX: Towards Explainable AI-Generated Image Detection with Multimodal Large Language Models [82.04858317800097]
ForenXは画像の真正性を識別するだけでなく、人間の思考に共鳴する説明を提供する新しい手法である。
ForenXは、強力なマルチモーダル大言語モデル(MLLM)を使用して、法医学的な手がかりを分析し、解釈する。
本稿では,AI生成画像における偽証拠の記述専用のデータセットであるForgReasonを紹介する。
論文 参考訳(メタデータ) (2025-08-02T15:21:26Z) - FakeScope: Large Multimodal Expert Model for Transparent AI-Generated Image Forensics [66.14786900470158]
本稿では,AIによる画像鑑定に適した専門家マルチモーダルモデル(LMM)であるFakeScopeを提案する。
FakeScopeはAI合成画像を高精度に識別し、リッチで解釈可能なクエリ駆動の法医学的な洞察を提供する。
FakeScopeは、クローズドエンドとオープンエンドの両方の法医学的シナリオで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-03-31T16:12:48Z) - Towards Generalizable Forgery Detection and Reasoning [23.858913560970866]
We formulate detection and explanation as a unified forgery Detection and Reasoning task (FDR-Task)
マルチモーダル・フォージェリー推論データセット (MMFR-Dataset) は10つの生成モデルにわたる120K画像を含む大規模データセットであり, フォージェリー属性には378Kの推論アノテーションがある。
複数の生成モデルに対する実験により、FakeReasoningは堅牢な一般化を実現し、検出タスクと推論タスクの両方において最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2025-03-27T06:54:06Z) - Methods and Trends in Detecting AI-Generated Images: A Comprehensive Review [0.17188280334580194]
GAN(Generative Adversarial Networks)、拡散モデル(Diffusion Models)、変分オートエンコーダ(VAEs)は、高品質なマルチメディアデータの合成を可能にしている。
これらの進歩は、敵の攻撃、非倫理的使用、社会的な危害に関する重大な懸念を引き起こした。
このサーベイは、先進的な生成AIモデルによって生成された合成画像の検出と分類のための最先端技術に関する包括的なレビューを提供する。
論文 参考訳(メタデータ) (2025-02-21T03:16:18Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
PPI(Proactive Pseudo-Intervention)と呼ばれる新しい対照的な学習戦略を提案する。
PPIは、因果関係のない画像の特徴を保護するために積極的に介入する。
また,重要な画像画素を識別するための,因果的に通知された新たなサリエンスマッピングモジュールを考案し,モデル解釈の容易性を示す。
論文 参考訳(メタデータ) (2020-12-06T20:30:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。