論文の概要: Melanoma Classification Through Deep Ensemble Learning and Explainable AI
- arxiv url: http://arxiv.org/abs/2511.00246v1
- Date: Fri, 31 Oct 2025 20:36:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-05 16:37:26.689085
- Title: Melanoma Classification Through Deep Ensemble Learning and Explainable AI
- Title(参考訳): ディープラーニングと説明可能なAIによるメラノーマの分類
- Authors: Wadduwage Shanika Perera, ABM Islam, Van Vung Pham, Min Kyung An,
- Abstract要約: メラノーマは最も攻撃的で致命的な皮膚がんの1つであり、早期に検出され治療を受けなければ死亡する。
深層学習(DL)に基づくシステムは,これらの病変を高精度に検出することができる。
本稿では,3つの最先端ディープラーニングネットワークのアンサンブル学習を用いた機械学習モデルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Melanoma is one of the most aggressive and deadliest skin cancers, leading to mortality if not detected and treated in the early stages. Artificial intelligence techniques have recently been developed to help dermatologists in the early detection of melanoma, and systems based on deep learning (DL) have been able to detect these lesions with high accuracy. However, the entire community must overcome the explainability limit to get the maximum benefit from DL for diagnostics in the healthcare domain. Because of the black box operation's shortcomings in DL models' decisions, there is a lack of reliability and trust in the outcomes. However, Explainable Artificial Intelligence (XAI) can solve this problem by interpreting the predictions of AI systems. This paper proposes a machine learning model using ensemble learning of three state-of-the-art deep transfer Learning networks, along with an approach to ensure the reliability of the predictions by utilizing XAI techniques to explain the basis of the predictions.
- Abstract(参考訳): メラノーマは最も攻撃的で致命的な皮膚がんの1つであり、早期に検出され治療を受けなければ死亡する。
近年、皮膚科医がメラノーマの早期発見を支援するために人工知能技術が開発され、深層学習(DL)に基づくシステムがこれらの病変を高精度に検出できるようになった。
しかし、医療領域の診断においてDLから最大限の利益を得るためには、コミュニティ全体が説明可能性の限界を克服しなければなりません。
DLモデルの判断にブラックボックス操作の欠点があるため、信頼性と信頼性が欠如している。
しかし、説明可能な人工知能(XAI)は、AIシステムの予測を解釈することで、この問題を解決できる。
本稿では,3つの最先端深層移動学習ネットワークのアンサンブル学習を用いた機械学習モデルを提案する。
関連論文リスト
- Robust Melanoma Thickness Prediction via Deep Transfer Learning enhanced by XAI Techniques [39.97900702763419]
本研究は,メラノーマの深さを測定するために皮膚内視鏡像の解析に焦点をあてる。
顆粒層の上部から腫瘍浸潤の最も深い地点まで測定されたブレスロー深さは、黒色腫のステージングと治療決定の指針となる重要なパラメータである。
ISICやプライベートコレクションを含むさまざまなデータセットが使用され、合計で1162枚の画像が含まれている。
その結果, 従来の手法に比べて, モデルが大幅に改善された。
論文 参考訳(メタデータ) (2024-06-19T11:07:55Z) - Breast Cancer Diagnosis: A Comprehensive Exploration of Explainable Artificial Intelligence (XAI) Techniques [37.9243470221619]
乳がんの診断・診断における説明可能な人工知能(XAI)技術の適用について検討する。
複雑なAIモデルと実用的な医療アプリケーションの間のギャップを埋めることにおけるXAIの可能性を強調することを目的としている。
論文 参考訳(メタデータ) (2024-06-01T18:50:03Z) - An Interpretable Deep Learning Approach for Skin Cancer Categorization [0.0]
我々は、皮膚がん検出の問題に対処するために、現代のディープラーニング手法と説明可能な人工知能(XAI)アプローチを使用する。
皮膚病変の分類には,XceptionNet,EfficientNetV2S,InceptionResNetV2,EfficientNetV2Mの4つの最先端事前訓練モデルを用いる。
我々の研究は、ディープラーニングと説明可能な人工知能(XAI)が皮膚がんの診断をどのように改善するかを示している。
論文 参考訳(メタデータ) (2023-12-17T12:11:38Z) - Explainable AI in Diagnosing and Anticipating Leukemia Using Transfer
Learning Method [0.0]
本研究は,小児および10代に流行する急性リンパ芽球性白血病(ALL)に焦点をあてる。
ディープラーニング技術を活用したコンピュータ支援診断(CAD)モデルを用いた自動検出手法を提案する。
提案手法は98.38%の精度を達成し、他の試験モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-12-01T10:37:02Z) - Application of Machine Learning in Melanoma Detection and the
Identification of 'Ugly Duckling' and Suspicious Naevi: A Review [0.45545745874600063]
メラノーマをモニターする際、「Ugly Duckling Naevus」が登場し、特徴的な特徴を持つ病変を指す。
コンピュータ支援診断 (CAD) は, 研究開発において重要な役割を担っている。
本稿では,メラノーマと疑わしいナエビを検出するための最新の機械学習およびディープラーニングアルゴリズムについて概説する。
論文 参考訳(メタデータ) (2023-09-01T05:50:47Z) - Dermatologist-like explainable AI enhances trust and confidence in
diagnosing melanoma [0.0]
人工知能システムがメラノーマを識別する方法における透明性の欠如は、ユーザーの受け入れに深刻な障害をもたらす。
ほとんどのXAI法は、正確に位置付けられたドメイン固有の説明を生成できないため、説明の解釈が困難である。
我々は、皮膚科医が容易に解釈できるテキストと地域に基づく説明を生成するXAIシステムを開発した。
論文 参考訳(メタデータ) (2023-03-17T17:25:55Z) - Efficient Out-of-Distribution Detection of Melanoma with Wavelet-based
Normalizing Flows [22.335623464185105]
メラノーマは皮膚がんの重篤な形態であり、後期の死亡率が高い。
データセットは非常に不均衡であり、最先端の教師付きAIモデルのトレーニングを複雑にします。
本稿では, 生成モデルを用いて良性データ分布を学習し, 密度推定による悪性画像の検出を提案する。
論文 参考訳(メタデータ) (2022-08-09T09:57:56Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
機械学習は医療の改善に大いに貢献するが、その利用が健康格差を広めたり増幅したりしないことを確実にすることは重要である。
アルゴリズムの不公平性の潜在的な要因の1つ、ショートカット学習は、トレーニングデータにおける不適切な相関に基づいてMLモデルが予測した時に発生する。
マルチタスク学習を用いて,臨床MLシステムの公平性評価の一環として,ショートカット学習の評価と緩和を行う手法を提案する。
論文 参考訳(メタデータ) (2022-07-21T09:35:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。