論文の概要: AgentGit: A Version Control Framework for Reliable and Scalable LLM-Powered Multi-Agent Systems
- arxiv url: http://arxiv.org/abs/2511.00628v1
- Date: Sat, 01 Nov 2025 17:11:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-05 16:37:26.87032
- Title: AgentGit: A Version Control Framework for Reliable and Scalable LLM-Powered Multi-Agent Systems
- Title(参考訳): AgentGit: 信頼性とスケーラブルなLLM駆動マルチエージェントシステムのためのバージョン管理フレームワーク
- Authors: Yang Li, Siqi Ping, Xiyu Chen, Xiaojian Qi, Zigan Wang, Ye Luo, Xiaowei Zhang,
- Abstract要約: AgentGitはGitライクなロールバックとブランチをマルチエージェントシステム(MAS)にもたらすフレームワークです。
AgentGitは冗長、ランタイム、トークンの使用を著しく削減し、複数のブランチをまたいだ並列探索をサポートしています。
この作業は、より堅牢なMAS設計への実践的なパスを提供し、コラボレーティブAIシステムにおけるエラー回復、安全な探索、計算、A/Bテストを可能にする。
- 参考スコア(独自算出の注目度): 7.408263799616532
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the rapid progress of large language models (LLMs), LLM-powered multi-agent systems (MAS) are drawing increasing interest across academia and industry. However, many current MAS frameworks struggle with reliability and scalability, especially on complex tasks. We present AgentGit, a framework that brings Git-like rollback and branching to MAS workflows. Built as an infrastructure layer on top of LangGraph, AgentGit supports state commit, revert, and branching, allowing agents to traverse, compare, and explore multiple trajectories efficiently. To evaluate AgentGit, we designed an experiment that optimizes target agents by selecting better prompts. We ran a multi-step A/B test against three baselines -- LangGraph, AutoGen, and Agno -- on a real-world task: retrieving and analyzing paper abstracts. Results show that AgentGit significantly reduces redundant computation, lowers runtime and token usage, and supports parallel exploration across multiple branches, enhancing both reliability and scalability in MAS development. This work offers a practical path to more robust MAS design and enables error recovery, safe exploration, iterative debugging, and A/B testing in collaborative AI systems.
- Abstract(参考訳): 大規模言語モデル (LLM) の急速な進歩に伴い, LLM を利用したマルチエージェントシステム (MAS) は, 学界や業界で注目されている。
しかしながら、現在のMASフレームワークの多くは、特に複雑なタスクにおいて、信頼性とスケーラビリティに苦慮している。
私たちは、GitライクなロールバックとブランチをMASワークフローにもたらすフレームワークであるAgentGitを紹介します。
LangGraph上にインフラストラクチャ層として構築されたAgentGitは、状態コミット、リバージョン、ブランチをサポートし、エージェントをトラバースし、比較し、複数のトラジェクトリを効率的に探索することができる。
AgentGitを評価するために、より優れたプロンプトを選択してターゲットエージェントを最適化する実験を設計した。
私たちはLangGraph、AutoGen、Agnoの3つのベースラインに対して、実際のタスクとして、紙の抽象化を検索して分析する、多段階のA/Bテストを実行しました。
AgentGitは冗長な計算を大幅に削減し、ランタイムとトークンの使用量を削減し、複数のブランチをまたいだ並列探索をサポートし、MAS開発における信頼性とスケーラビリティを向上する。
この作業は、より堅牢なMAS設計への実践的なパスを提供し、エラーリカバリ、安全な探索、反復デバッグ、共同AIシステムでのA/Bテストを可能にする。
関連論文リスト
- DeepAgent: A General Reasoning Agent with Scalable Toolsets [111.6384541877723]
DeepAgentは、自律的な思考、ツール発見、アクション実行を実行するエンドツーエンドのディープ推論エージェントである。
長期にわたる相互作用の課題に対処するために,過去の相互作用を構造化エピソード,動作,ツール記憶に圧縮する自律的メモリ折り畳み機構を導入する。
LLMシミュレートされたAPIを活用し、ツール呼び出しトークンにきめ細かいクレジットを割り当てるツールコールアドバンテージ属性を適用した、エンドツーエンドの強化学習戦略であるToolPOを開発した。
論文 参考訳(メタデータ) (2025-10-24T16:24:01Z) - AgentRouter: A Knowledge-Graph-Guided LLM Router for Collaborative Multi-Agent Question Answering [51.07491603393163]
tAgentは知識グラフ誘導ルーティング問題としてマルチエージェントQAを定式化するフレームワークである。
エージェントアウトプットのソフトな監督と重み付けされた集約を活用することで、エージェントは多様なエージェントの相補的な強みを捉える、原則化された協調スキームを学ぶ。
論文 参考訳(メタデータ) (2025-10-06T23:20:49Z) - Multi-Agent Tool-Integrated Policy Optimization [67.12841355267678]
大規模言語モデル(LLM)は、知識集約的かつ複雑な推論タスクに対して、多ターンツール統合計画にますます依存している。
既存の実装は通常、単一のエージェントに依存するが、コンテキスト長とノイズの多いツールレスポンスに悩まされる。
ツール統合マルチエージェントフレームワークの効果的な強化学習をサポートする方法はない。
論文 参考訳(メタデータ) (2025-10-06T10:44:04Z) - Visual Document Understanding and Question Answering: A Multi-Agent Collaboration Framework with Test-Time Scaling [83.78874399606379]
テスト時間スケーリングを備えたマルチエージェント協調フレームワークであるMACTを提案する。
4つの異なる小規模エージェントから構成され、明確に定義された役割と効果的なコラボレーションがある。
一般および数学的タスクの能力を犠牲にすることなく、より小さなパラメータスケールで優れた性能を示す。
論文 参考訳(メタデータ) (2025-08-05T12:52:09Z) - SE-Agent: Self-Evolution Trajectory Optimization in Multi-Step Reasoning with LLM-Based Agents [32.76299758137446]
大規模言語モデル(LLM)ベースのエージェントは、最近、複雑な推論とツールの使用において、環境とのマルチステップのインタラクションを通じて印象的な機能を示した。
これらの軌道にはリッチなフィードバックが含まれており、エージェントを正しい方向に誘導して問題を正しく解くことができる。
モンテカルロ木探索 (MCTS) のような一般的な手法は、探索と搾取を効果的にバランスさせることができるが、それらは様々な軌道間の相互依存を無視している。
エージェントが推論プロセスを反復的に最適化できる自己進化フレームワークSE-Agentを提案する。
論文 参考訳(メタデータ) (2025-08-04T05:51:55Z) - CodeAgents: A Token-Efficient Framework for Codified Multi-Agent Reasoning in LLMs [16.234259194402163]
マルチエージェント推論を符号化し、マルチエージェントシステムにおける構造化されたトークン効率の計画を可能にするプロンプトフレームワークであるCodeAgentsを紹介する。
その結果, 計画性能は一貫した改善がみられ, 基本となる自然言語よりも3~36ポイントの絶対的な向上が見られた。
論文 参考訳(メタデータ) (2025-07-04T02:20:19Z) - R&D-Agent: An LLM-Agent Framework Towards Autonomous Data Science [70.1638335489284]
高レベルの機械学習エンジニアリングタスクは、労働集約的で反復的である。
機械学習プロセスを形式化する包括的で分離されたフレームワークであるR&D-Agentを紹介します。
R&D-AgentはMLEを2つのフェーズと6つのコンポーネントに定義し、MLEのエージェント設計を原則としてテスト可能なプロセスに変える。
論文 参考訳(メタデータ) (2025-05-20T06:07:00Z) - A Unified Debugging Approach via LLM-Based Multi-Agent Synergy [39.11825182386288]
FixAgentはマルチエージェントのシナジーによる統合デバッグのためのエンドツーエンドフレームワークである。
1.25$times$ 2.56$times$レポレベルのベンチマークであるDefects4Jのバグを修正した。
論文 参考訳(メタデータ) (2024-04-26T04:55:35Z) - AgentQuest: A Modular Benchmark Framework to Measure Progress and Improve LLM Agents [19.439775106707344]
AgentQuestは、ベンチマークとメトリクスがモジュール化され、十分にドキュメント化され使いやすいAPIを通じて容易に利用できるフレームワークである。
課題を解決しながら LLM エージェントの進捗を確実に追跡できる2つの新しい評価指標を提供する。
一般的な障害点を特定し,エージェントアーキテクチャを洗練し,大幅な性能向上を実現する2つのユースケースにおけるメトリクスの有用性を実証する。
論文 参考訳(メタデータ) (2024-04-09T16:01:24Z) - AgentLite: A Lightweight Library for Building and Advancing
Task-Oriented LLM Agent System [91.41155892086252]
LLMエージェントの研究を簡略化する新しいAIエージェントライブラリであるAgentLiteをオープンソースとして公開する。
AgentLiteは、タスクを分解するエージェントの機能を強化するために設計されたタスク指向フレームワークである。
我々は,その利便性と柔軟性を示すために,AgentLiteで開発された実用アプリケーションを紹介した。
論文 参考訳(メタデータ) (2024-02-23T06:25:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。