論文の概要: SliceVision-F2I: A Synthetic Feature-to-Image Dataset for Visual Pattern Representation on Network Slices
- arxiv url: http://arxiv.org/abs/2511.01087v1
- Date: Sun, 02 Nov 2025 21:37:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-05 16:37:27.059739
- Title: SliceVision-F2I: A Synthetic Feature-to-Image Dataset for Visual Pattern Representation on Network Slices
- Title(参考訳): SliceVision-F2I:ネットワークスライス上での視覚パターン表現のための合成特徴画像データセット
- Authors: Md. Abid Hasan Rafi, Mst. Fatematuj Johora, Pankaj Bhowmik,
- Abstract要約: SliceVision-F2Iは、次世代ネットワークシステムのためのネットワークスライシングにおける特徴可視化を研究するための合成サンプルのデータセットである。
このデータセットは現実的でノイズの多いネットワーク条件をシミュレートし、運用上の不確実性と測定の不完全性を反映する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergence of 5G and 6G networks has established network slicing as a significant part of future service-oriented architectures, demanding refined identification methods supported by robust datasets. The article presents SliceVision-F2I, a dataset of synthetic samples for studying feature visualization in network slicing for next-generation networking systems. The dataset transforms multivariate Key Performance Indicator (KPI) vectors into visual representations through four distinct encoding methods: physically inspired mappings, Perlin noise, neural wallpapering, and fractal branching. For each encoding method, 30,000 samples are generated, each comprising a raw KPI vector and a corresponding RGB image at low-resolution pixels. The dataset simulates realistic and noisy network conditions to reflect operational uncertainties and measurement imperfections. SliceVision-F2I is suitable for tasks involving visual learning, network state classification, anomaly detection, and benchmarking of image-based machine learning techniques applied to network data. The dataset is publicly available and can be reused in various research contexts, including multivariate time series analysis, synthetic data generation, and feature-to-image transformations.
- Abstract(参考訳): 5Gと6Gネットワークの出現は、将来のサービス指向アーキテクチャの重要な部分としてネットワークスライシングを確立し、堅牢なデータセットでサポートされている洗練された識別方法を必要としている。
本稿では,次世代ネットワークシステムのためのネットワークスライシングにおける特徴可視化研究のための合成サンプルのデータセットであるSliceVision-F2Iについて述べる。
このデータセットは、多変量キーパフォーマンス指標(KPI)ベクターを、物理的にインスパイアされたマッピング、パーリンノイズ、神経壁紙、フラクタル分岐という4つの異なるエンコーディング方法で視覚表現に変換する。
各符号化法では、生のKPIベクトルと、低解像度画素での対応するRGB画像とからなる3万のサンプルを生成する。
このデータセットは現実的でノイズの多いネットワーク条件をシミュレートし、運用上の不確実性と測定の不完全性を反映する。
SliceVision-F2Iは、視覚学習、ネットワーク状態分類、異常検出、およびネットワークデータに適用された画像ベース機械学習技術のベンチマークを含むタスクに適している。
データセットは公開されており、多変量時系列分析、合成データ生成、フィーチャー・ツー・イメージ変換など、さまざまな研究状況で再利用することができる。
関連論文リスト
- Neural Clustering based Visual Representation Learning [61.72646814537163]
クラスタリングは、機械学習とデータ分析における最も古典的なアプローチの1つである。
本稿では,特徴抽出をデータから代表者を選択するプロセスとみなすクラスタリング(FEC)による特徴抽出を提案する。
FECは、個々のクラスタにピクセルをグループ化して抽象的な代表を配置し、現在の代表とピクセルの深い特徴を更新する。
論文 参考訳(メタデータ) (2024-03-26T06:04:50Z) - Image complexity based fMRI-BOLD visual network categorization across
visual datasets using topological descriptors and deep-hybrid learning [3.522950356329991]
本研究の目的は,視覚的データセットと異なる視覚刺激に応答して,ネットワークトポロジがどう異なるかを検討することである。
これを実現するために、COCO、ImageNet、SUNを表す視覚ネットワーク毎に0次元および1次元の永続図を演算する。
抽出したK平均クラスター特徴は、これらの視覚ネットワークの分類において90%-95%の範囲で精度の高い新しいディープハイブリッドモデルに供給される。
論文 参考訳(メタデータ) (2023-11-03T14:05:57Z) - GKGNet: Group K-Nearest Neighbor based Graph Convolutional Network for Multi-Label Image Recognition [37.02054260449195]
マルチラベル画像認識(Multi-Label Image Recognition, MLIR)は、1つの画像で複数のオブジェクトラベルを予測することを目的とした課題である。
我々は、最初の完全グラフ畳み込みモデル、グループK-アネレスト近傍グラフ畳み込みネットワーク(GKGNet)を提示する。
実験により,GKGNetは計算コストを大幅に削減し,最先端の性能を実現することを示した。
論文 参考訳(メタデータ) (2023-08-28T07:50:04Z) - SeMLaPS: Real-time Semantic Mapping with Latent Prior Networks and
Quasi-Planar Segmentation [53.83313235792596]
本稿では,RGB-Dシーケンスからのリアルタイム意味マッピングのための新しい手法を提案する。
2DニューラルネットワークとSLAMシステムに基づく3Dネットワークと3D占有マッピングを組み合わせる。
本システムは,2D-3Dネットワークベースシステムにおいて,最先端のセマンティックマッピング品質を実現する。
論文 参考訳(メタデータ) (2023-06-28T22:36:44Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Vision Transformer with Convolutions Architecture Search [72.70461709267497]
本稿では,畳み込み型アーキテクチャサーチ(VTCAS)を用いたアーキテクチャ探索手法を提案する。
VTCASによって探索された高性能バックボーンネットワークは、畳み込みニューラルネットワークの望ましい特徴をトランスフォーマーアーキテクチャに導入する。
これは、特に低照度屋内シーンにおいて、物体認識のためのニューラルネットワークの堅牢性を高める。
論文 参考訳(メタデータ) (2022-03-20T02:59:51Z) - Leveraging Image Complexity in Macro-Level Neural Network Design for
Medical Image Segmentation [3.974175960216864]
画像の複雑さは、与えられたデータセットに最適なものを選択するためのガイドラインとして利用できることを示す。
高複雑性データセットの場合、元のイメージ上で実行される浅いネットワークは、ダウンサンプリングされたイメージ上で実行されるディープネットワークよりもセグメンテーション結果が優れている可能性がある。
論文 参考訳(メタデータ) (2021-12-21T09:49:47Z) - Single-pass Object-adaptive Data Undersampling and Reconstruction for
MRI [6.599344783327054]
本稿では,畳み込みニューラルネットワークMNetを用いたデータ駆動型サンプリング手法を提案する。
ネットワークは、各オブジェクトに対する非常に限られた低周波k空間データを観測し、所望のアンダーサンプリングパターンを迅速に予測する。
高速MRI膝関節データセットの実験結果から,提案した学習アンダーサンプリングネットワークを用いて,4倍,8倍の加速度で物体特異的マスクを生成できることが示された。
論文 参考訳(メタデータ) (2021-11-17T16:06:06Z) - Neural BRDF Representation and Importance Sampling [79.84316447473873]
本稿では,リフレクタンスBRDFデータのコンパクトニューラルネットワークに基づく表現について述べる。
BRDFを軽量ネットワークとしてエンコードし、適応角サンプリングによるトレーニングスキームを提案する。
複数の実世界のデータセットから等方性および異方性BRDFの符号化結果を評価する。
論文 参考訳(メタデータ) (2021-02-11T12:00:24Z) - VAE-Info-cGAN: Generating Synthetic Images by Combining Pixel-level and
Feature-level Geospatial Conditional Inputs [0.0]
画素レベル(PLC)と特徴レベル(FLC)を同時に条件付けした意味的リッチな画像を合成するための条件生成モデルを提案する。
GPSデータセットを用いた実験では,提案モデルが地理的に異なる場所にまたがる様々な形態のマクロアグリゲーションを正確に生成できることが示されている。
論文 参考訳(メタデータ) (2020-12-08T03:46:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。