論文の概要: Protecting the Neural Networks against FGSM Attack Using Machine Unlearning
- arxiv url: http://arxiv.org/abs/2511.01377v1
- Date: Mon, 03 Nov 2025 09:21:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-05 16:37:27.198074
- Title: Protecting the Neural Networks against FGSM Attack Using Machine Unlearning
- Title(参考訳): 機械学習を用いたFGSM攻撃に対するニューラルネットワークの保護
- Authors: Amir Hossein Khorasani, Ali Jahanian, Maryam Rastgarpour,
- Abstract要約: 我々は、画像分類の一般的なアーキテクチャであるLeNetニューラルネットワークに、未学習のテクニックを適用することに注力する。
我々は、LeNetネットワーク上でのFGSMの未学習攻撃の有効性を評価し、これらの攻撃に対するロバスト性を大幅に改善できることを見出した。
- 参考スコア(独自算出の注目度): 1.0832844764942349
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Machine learning is a powerful tool for building predictive models. However, it is vulnerable to adversarial attacks. Fast Gradient Sign Method (FGSM) attacks are a common type of adversarial attack that adds small perturbations to input data to trick a model into misclassifying it. In response to these attacks, researchers have developed methods for "unlearning" these attacks, which involves retraining a model on the original data without the added perturbations. Machine unlearning is a technique that tries to "forget" specific data points from the training dataset, to improve the robustness of a machine learning model against adversarial attacks like FGSM. In this paper, we focus on applying unlearning techniques to the LeNet neural network, a popular architecture for image classification. We evaluate the efficacy of unlearning FGSM attacks on the LeNet network and find that it can significantly improve its robustness against these types of attacks.
- Abstract(参考訳): 機械学習は予測モデルを構築するための強力なツールである。
しかし、敵の攻撃には弱い。
Fast Gradient Sign Method (FGSM) 攻撃は、入力データに小さな摂動を追加し、モデルを騙して誤分類する、共通のタイプの敵攻撃である。
これらの攻撃に反応して、研究者たちはこれらの攻撃を「学習しない」方法を開発した。
機械学習は、トレーニングデータセットから特定のデータポイントを“忘れる”ためのテクニックであり、FGSMのような敵攻撃に対するマシンラーニングモデルの堅牢性を改善する。
本稿では、画像分類の一般的なアーキテクチャであるLeNetニューラルネットワークに、未学習の手法を適用することに焦点を当てる。
我々は、LeNetネットワーク上でのFGSMの未学習攻撃の有効性を評価し、これらの攻撃に対するロバスト性を大幅に改善できることを見出した。
関連論文リスト
- Adversarial Training for Defense Against Label Poisoning Attacks [53.893792844055106]
ラベル中毒攻撃は機械学習モデルに重大なリスクをもたらす。
本稿では,これらの脅威に対処するために,サポートベクトルマシン(SVM)に基づく新たな対角的防御戦略を提案する。
提案手法は, 様々なモデルアーキテクチャに対応し, カーネルSVMを用いた予測勾配降下アルゴリズムを用いて, 対向学習を行う。
論文 参考訳(メタデータ) (2025-02-24T13:03:19Z) - Undermining Image and Text Classification Algorithms Using Adversarial Attacks [0.0]
本研究は,各種機械学習モデルを訓練し,GANとSMOTEを用いてテキスト分類モデルへの攻撃を目的とした追加データポイントを生成することにより,そのギャップを解消する。
実験の結果,分類モデルの重大な脆弱性が明らかとなった。特に,攻撃後の最上位のテキスト分類モデルの精度が20%低下し,顔認識精度が30%低下した。
論文 参考訳(メタデータ) (2024-11-03T18:44:28Z) - Genetic Algorithm-Based Dynamic Backdoor Attack on Federated
Learning-Based Network Traffic Classification [1.1887808102491482]
本稿では,GABAttackを提案する。GABAttackは,ネットワークトラフィック分類のためのフェデレーション学習に対する新しい遺伝的アルゴリズムに基づくバックドア攻撃である。
この研究は、ネットワークセキュリティの専門家や実践者がこのような攻撃に対して堅牢な防御策を開発するための警告となる。
論文 参考訳(メタデータ) (2023-09-27T14:02:02Z) - Boosting Model Inversion Attacks with Adversarial Examples [26.904051413441316]
ブラックボックス設定において、より高い攻撃精度を達成できる学習ベースモデル反転攻撃のための新しい訓練パラダイムを提案する。
まず,攻撃モデルの学習過程を,意味的損失関数を追加して規則化する。
第2に、学習データに逆例を注入し、クラス関連部の多様性を高める。
論文 参考訳(メタデータ) (2023-06-24T13:40:58Z) - Can Adversarial Examples Be Parsed to Reveal Victim Model Information? [62.814751479749695]
本研究では,データ固有の敵インスタンスから,データに依存しない被害者モデル(VM)情報を推測できるかどうかを問う。
我々は,135件の被害者モデルから生成された7種類の攻撃に対して,敵攻撃のデータセットを収集する。
単純な教師付きモデル解析ネットワーク(MPN)は、見えない敵攻撃からVM属性を推測できることを示す。
論文 参考訳(メタデータ) (2023-03-13T21:21:49Z) - Learning to Learn Transferable Attack [77.67399621530052]
転送逆行攻撃は非自明なブラックボックス逆行攻撃であり、サロゲートモデル上で敵の摂動を発生させ、そのような摂動を被害者モデルに適用することを目的としている。
本研究では,データとモデル拡張の両方から学習することで,敵の摂動をより一般化する学習可能な攻撃学習法(LLTA)を提案する。
提案手法の有効性を実証し, 現状の手法と比較して, 12.85%のトランスファー攻撃の成功率で検証した。
論文 参考訳(メタデータ) (2021-12-10T07:24:21Z) - Learning to Detect: A Data-driven Approach for Network Intrusion
Detection [17.288512506016612]
ネットワークトラフィックデータセットであるNSL-KDDについて、パターンを可視化し、異なる学習モデルを用いてサイバー攻撃を検出することで包括的な研究を行う。
侵入検知に単一学習モデルアプローチを用いた従来の浅層学習モデルや深層学習モデルとは異なり、階層戦略を採用する。
バイナリ侵入検出タスクにおける教師なし表現学習モデルの利点を実証する。
論文 参考訳(メタデータ) (2021-08-18T21:19:26Z) - Learning to Attack: Towards Textual Adversarial Attacking in Real-world
Situations [81.82518920087175]
敵攻撃は、敵の例でディープニューラルネットワークを騙すことを目的としている。
本稿では、攻撃履歴から学習し、より効率的に攻撃を開始することができる強化学習に基づく攻撃モデルを提案する。
論文 参考訳(メタデータ) (2020-09-19T09:12:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。