論文の概要: KV Cache Transform Coding for Compact Storage in LLM Inference
- arxiv url: http://arxiv.org/abs/2511.01815v1
- Date: Mon, 03 Nov 2025 18:20:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-05 16:37:27.365689
- Title: KV Cache Transform Coding for Compact Storage in LLM Inference
- Title(参考訳): LLM推論におけるコンパクトストレージのためのKVキャッシュ変換符号化
- Authors: Konrad Staniszewski, Adrian Łańcucki,
- Abstract要約: KVTCは、KVキャッシュをコンパクトなオンGPUとオフGPUストレージに圧縮する軽量トランスフォーメーションコーダである。
KVキャッシュの冗長性を活用することで、KVTCは推論と長文の精度を維持しながら最大20$times$圧縮を達成する。
我々は、AIME25、LiveCodeBench、GSM8K、MMLU、Qasper、RULER、MATH-500を含むベンチマークで、Llama 3、Mistral NeMo、R1-Qwen 2.5モデルでKVTCをテストする。
- 参考スコア(独自算出の注目度): 2.20003167536462
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Serving large language models (LLMs) at scale necessitates efficient key-value (KV) cache management. KV caches can be reused across conversation turns via shared-prefix prompts that are common in iterative code editing and chat. However, stale caches consume scarce GPU memory, require offloading, or force recomputation. We present KVTC, a lightweight transform coder that compresses KV caches for compact on-GPU and off-GPU storage. Drawing on classical media compression, KVTC combines PCA-based feature decorrelation, adaptive quantization, and entropy coding. It requires only a brief initial calibration and leaves model parameters unchanged. By exploiting redundancies in KV caches, KVTC achieves up to 20$\times$ compression while maintaining reasoning and long-context accuracy, and 40$\times$ or higher for specific use cases. We test KVTC with Llama 3, Mistral NeMo, and R1-Qwen 2.5 models across benchmarks including AIME25, LiveCodeBench, GSM8K, MMLU, Qasper, RULER, and MATH-500. It consistently outperforms inference-time baselines such as token eviction, quantization, and SVD-based methods, while achieving higher compression ratios. These results support KVTC as a practical building block for memory-efficient LLM serving with reusable KV caches.
- Abstract(参考訳): 大きな言語モデル(LLM)を大規模に実行するには、効率的なキー値(KV)キャッシュ管理が必要である。
KVキャッシュは、反復的なコード編集やチャットで一般的な共有プレフィックスプロンプトを通じて、会話ターン間で再利用することができる。
しかし、古いキャッシュは少ないGPUメモリを消費し、オフロードや強制再計算を必要とする。
KVTCは、KVキャッシュを圧縮して、コンパクトなオンGPUとオフGPUストレージを実現する軽量トランスフォーメーションコーダである。
古典的なメディア圧縮に基づいて、KVTCはPCAベースの特徴デコレーション、適応量子化、エントロピー符号化を組み合わせた。
簡単な初期キャリブレーションしか必要とせず、モデルのパラメータは変わらない。
KVキャッシュの冗長性を活用することで、KVTCは推論と長文の精度を維持しながら最大20$\times$圧縮を実現し、特定のユースケースでは40$\times$以上となる。
我々は、AIME25、LiveCodeBench、GSM8K、MMLU、Qasper、RULER、MATH-500を含むベンチマークで、Llama 3、Mistral NeMo、R1-Qwen 2.5モデルでKVTCをテストする。
トークンの消去、量子化、SVDベースの手法などの推論時間ベースラインを一貫して上回り、高い圧縮比を達成する。
これらの結果は、再利用可能なKVキャッシュを備えたメモリ効率の高いLCMのための実用的なビルディングブロックとしてKVTCをサポートする。
関連論文リスト
- CommVQ: Commutative Vector Quantization for KV Cache Compression [50.37946553931796]
本稿では,長期LLM推論におけるメモリ使用量を大幅に削減するために,CommVQ(CommVQ)を提案する。
まず、KVキャッシュを圧縮するための軽量エンコーダとコードブックを用いた加算量子化を導入する。
提案手法は,RoPE-commutative codebook を用いた加算量子化と低オーバーヘッド化により高い精度を実現する。
論文 参考訳(メタデータ) (2025-06-23T17:50:11Z) - KVzip: Query-Agnostic KV Cache Compression with Context Reconstruction [37.97434606840326]
トランスフォーマーベースの大規模言語モデル(LLM)は、推論中にキー値(KV)ペアとしてキャッシュコンテキストを持つ。
コンテキストの長さが大きくなると、KVキャッシュのサイズが拡大し、メモリオーバーヘッドが大きくなり、注意の遅延が増大する。
本稿では,クエリに依存しないKVキャッシュ消去手法であるKVzipを紹介する。
論文 参考訳(メタデータ) (2025-05-29T13:05:47Z) - QuantSpec: Self-Speculative Decoding with Hierarchical Quantized KV Cache [67.84112700032007]
大きな言語モデル(LLM)は、長いコンテキスト設定のためにエッジデバイスにデプロイされることが増えている。
これらのシナリオでは、キーバリュー(KV)キャッシュがGPUメモリとレイテンシの両方において主要なボトルネックとなっている。
そこで本研究では,ターゲットモデルのアーキテクチャを共有するが,階層的な4ビット量子化KVキャッシュと4ビット量子化重みを併用して高速化を行う,新たな自己推論型デコーディングフレームワークであるQuantSpecを提案する。
論文 参考訳(メタデータ) (2025-02-05T20:43:48Z) - DiffKV: Differentiated Memory Management for Large Language Models with Parallel KV Compaction [33.936381781692994]
DiffKVは効率的なKVキャッシュ圧縮のための新しいフレームワークである。
KVキャッシュにおける3つのレベルの分化を利用する。
KVキャッシュを2.7Times$から5.7times$に圧縮できる。
論文 参考訳(メタデータ) (2024-12-04T08:51:23Z) - KVSharer: Efficient Inference via Layer-Wise Dissimilar KV Cache Sharing [58.29726147780976]
我々は,層間をKVキャッシュで共有し,層間圧縮を実現する,textit KVSharerと呼ばれるプラグアンドプレイ方式を提案する。
実験の結果、textit KVSharerはKVキャッシュの計算を30%削減し、メモリ消費を削減できることがわかった。
我々は,textit KVSharerが既存の層内KVキャッシュ圧縮手法と互換性があることを検証する。
論文 参考訳(メタデータ) (2024-10-24T08:06:41Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache [67.9776980972508]
我々はKIVIというチューニング不要な2ビットKVキャッシュ量子化アルゴリズムを開発した。
KIVI は Llama, Falcon, Mistral のモデルを $mathbf2.6times$ less peak memory を使用しながらほぼ同じ品質を維持することができる。
論文 参考訳(メタデータ) (2024-02-05T06:06:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。