論文の概要: Predicting Microbial Interactions Using Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2511.02038v1
- Date: Mon, 03 Nov 2025 20:19:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-05 18:47:05.670504
- Title: Predicting Microbial Interactions Using Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークによる微生物相互作用の予測
- Authors: Elham Gholamzadeh, Kajal Singla, Nico Scherf,
- Abstract要約: 私たちは、モデルをトレーニングするために、最も大きなペアワイズインタラクションデータセットの1つを使用しています。
我々は,共同培養実験における共有情報を活用するために,ペアワイズ微生物相互作用のエッジグラフを構築した。
我々のモデルは二元間相互作用(正負)を予測できるだけでなく、相互主義、競争、寄生のようなより複雑な相互作用のタイプも分類できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting interspecies interactions is a key challenge in microbial ecology, as these interactions are critical to determining the structure and activity of microbial communities. In this work, we used data on monoculture growth capabilities, interactions with other species, and phylogeny to predict a negative or positive effect of interactions. More precisely, we used one of the largest available pairwise interaction datasets to train our models, comprising over 7,500 interactions be- tween 20 species from two taxonomic groups co-cultured under 40 distinct carbon conditions, with a primary focus on the work of Nestor et al.[28 ]. In this work, we propose Graph Neural Networks (GNNs) as a powerful classifier to predict the direction of the effect. We construct edge-graphs of pairwise microbial interactions in order to leverage shared information across individual co-culture experiments, and use GNNs to predict modes of interaction. Our model can not only predict binary interactions (positive/negative) but also classify more complex interaction types such as mutualism, competition, and parasitism. Our initial results were encouraging, achieving an F1-score of 80.44%. This significantly outperforms comparable methods in the literature, including conventional Extreme Gradient Boosting (XGBoost) models, which reported an F1-score of 72.76%.
- Abstract(参考訳): 種間相互作用の予測は微生物の生態学において重要な課題であり、これらの相互作用は微生物群集の構造と活動を決定するために重要である。
本研究では, モノカルチャーの成長能力, 他種との相互作用, 植物学に関するデータを用いて, 相互作用の負あるいは正の効果を予測する。
より正確には、40の異なる炭素条件下で共培養された2つの分類群から7,500種以上の相互作用が20種以上あり、Nestorらの研究に重点を置いている。
本研究では,効果の方向を予測する強力な分類器としてグラフニューラルネットワーク(GNN)を提案する。
我々は,共同培養実験における共有情報を活用するために,対の微生物相互作用のエッジグラフを構築し,GNNを用いて相互作用のモードを予測する。
我々のモデルは二元間相互作用(正負)を予測できるだけでなく、相互主義、競争、寄生のようなより複雑な相互作用のタイプも分類できる。
最初の結果は、80.44%のF1スコアを達成した。
これは、従来のXGBoost(Extreme Gradient Boosting)モデル(F1スコア72.76%)など、文学における同等の手法よりも大幅に優れていた。
関連論文リスト
- Cognitive Evolutionary Learning to Select Feature Interactions for Recommender Systems [59.117526206317116]
Cellはさまざまなタスクやデータに対して,さまざまなモデルに適応的に進化可能であることを示す。
4つの実世界のデータセットの実験では、細胞は最先端のベースラインを大幅に上回っている。
論文 参考訳(メタデータ) (2024-05-29T02:35:23Z) - Integrating GNN and Neural ODEs for Estimating Non-Reciprocal Two-Body Interactions in Mixed-Species Collective Motion [0.0]
本稿では,観測軌道から基礎となる運動方程式を推定するための新しいディープラーニングフレームワークを提案する。
本フレームワークは,グラフニューラルネットワークとニューラルディファレンシャル方程式を統合し,二体相互作用の効果的な予測を可能にする。
論文 参考訳(メタデータ) (2024-05-26T09:47:17Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
分子間相互作用予測のためのバイオKDN (Biomedical Knowledge Graph Denoising Network) を提案する。
BioKDNは、ノイズの多いリンクを学習可能な方法で識別することで、局所的な部分グラフの信頼性の高い構造を洗練する。
ターゲットの相互作用に関する関係を円滑にすることで、一貫性とロバストなセマンティクスを維持する。
論文 参考訳(メタデータ) (2023-12-09T07:08:00Z) - MMoE: Enhancing Multimodal Models with Mixtures of Multimodal Interaction Experts [92.76662894585809]
MMOE(Multimodal Mixtures of Experts)と呼ばれるマルチモーダルモデルの拡張手法を導入する。
MMoEは様々な種類のモデルに適用でき、改善できる。
論文 参考訳(メタデータ) (2023-11-16T05:31:21Z) - CausalBench: A Large-scale Benchmark for Network Inference from
Single-cell Perturbation Data [61.088705993848606]
本稿では,実世界の介入データに対する因果推論手法を評価するベンチマークスイートCausalBenchを紹介する。
CaulBenchには、新しい分散ベースの介入メトリクスを含む、生物学的に動機付けられたパフォーマンスメトリクスが含まれている。
論文 参考訳(メタデータ) (2022-10-31T13:04:07Z) - Understanding microbiome dynamics via interpretable graph representation
learning [0.0]
微生物構成における大規模な摂動は、ヒト生理学の健康と機能と強く相関している。
本稿では,これらの相互作用を,ノードが微生物であり,エッジが相互作用する時間進化グラフとしてモデル化することを提案する。
このような複雑な相互作用を分析する必要性から、時間進化グラフの低次元表現を学習する手法を開発した。
論文 参考訳(メタデータ) (2022-03-02T18:53:14Z) - Decoding the Protein-ligand Interactions Using Parallel Graph Neural
Networks [6.460973806588082]
PLI予測のための知識表現と推論を統合するための新しい並列グラフニューラルネットワーク(GNN)を提案する。
本手法は, 先行候補の行動, 有効性, 生物物理特性を予測するための, 解釈可能な, 説明可能な人工知能(AI)ツールとして機能する。
論文 参考訳(メタデータ) (2021-11-30T06:02:04Z) - Predicting Biomedical Interactions with Higher-Order Graph Convolutional
Networks [2.9488233765621295]
本稿では,生物医学的相互作用予測のための高次グラフ畳み込みネットワーク(HOGCN)を提案する。
タンパク質-タンパク質、薬物-ドラッグ、薬物-ターゲット、遺伝子-放出相互作用を含む4つの相互作用ネットワークの実験は、HOGCNがより正確で校正された予測を達成していることを示している。
論文 参考訳(メタデータ) (2020-10-16T17:16:09Z) - Temporal Positive-unlabeled Learning for Biomedical Hypothesis
Generation via Risk Estimation [46.852387038668695]
本稿では,仮説生成の科学的プロセスに機械学習を導入することを目的とする。
本稿では,ノード対埋め込みの学習において,前向きの確率を推定するための変分推論モデルを提案する。
実世界のバイオメディカルな用語関係データセットの実験結果と、COVID-19データセットのケーススタディ分析により、提案モデルの有効性が検証された。
論文 参考訳(メタデータ) (2020-10-05T10:58:03Z) - SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks [70.64925872964416]
分子間相互作用の予測のためのグラフニューラルネットワークSkipGNNを提案する。
SkipGNNは直接相互作用からの情報だけでなく、二階相互作用からも情報を収集することで分子間相互作用を予測する。
また,SkipGNNは,既存の手法を最大28.8%上回り,優れた,堅牢な性能を実現していることを示す。
論文 参考訳(メタデータ) (2020-04-30T16:55:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。