論文の概要: CFL: On the Use of Characteristic Function Loss for Domain Alignment in Machine Learning
- arxiv url: http://arxiv.org/abs/2511.02148v1
- Date: Tue, 04 Nov 2025 00:35:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-05 18:47:05.760057
- Title: CFL: On the Use of Characteristic Function Loss for Domain Alignment in Machine Learning
- Title(参考訳): CFL:機械学習における領域アライメントにおける特徴関数損失の利用について
- Authors: Abdullah Almansour, Ozan Tonguz,
- Abstract要約: 開発された機械学習モデルは、現実世界にデプロイされた場合、しばしば性能が劣る。
この問題は、これらの意思決定システムがリスクの高いアプリケーションで運用する必要がある場合、破滅的な結果をもたらす可能性がある。
周波数領域アプローチとして特徴関数(CF)を用いることは、分布シフトを測定する強力な代替手段であることを示す。
- 参考スコア(独自算出の注目度): 0.5500249707065664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Learning (ML) models are extensively used in various applications due to their significant advantages over traditional learning methods. However, the developed ML models often underperform when deployed in the real world due to the well-known distribution shift problem. This problem can lead to a catastrophic outcomes when these decision-making systems have to operate in high-risk applications. Many researchers have previously studied this problem in ML, known as distribution shift problem, using statistical techniques (such as Kullback-Leibler, Kolmogorov-Smirnov Test, Wasserstein distance, etc.) to quantify the distribution shift. In this letter, we show that using Characteristic Function (CF) as a frequency domain approach is a powerful alternative for measuring the distribution shift in high-dimensional space and for domain adaptation.
- Abstract(参考訳): 機械学習(ML)モデルは、従来の学習方法よりも大きな利点があるため、様々なアプリケーションで広く使われている。
しかし、よく知られた分散シフト問題により、開発済みのMLモデルは実世界での展開時に性能が劣ることが多い。
この問題は、これらの意思決定システムがリスクの高いアプリケーションで運用する必要がある場合、破滅的な結果をもたらす可能性がある。
多くの研究者がこの問題をMLで研究しており、分布シフト問題を統計技術(Kulback-Leibler、Kolmogorov-Smirnov Test、Wasserstein distanceなど)を用いて定量化している。
本稿では,周波数領域アプローチとして特徴関数(CF)を用いることが,高次元空間における分布変化の測定や領域適応のための強力な代替手段であることを示す。
関連論文リスト
- Distributional MIPLIB: a Multi-Domain Library for Advancing ML-Guided MILP Methods [14.819629773624348]
混合線形プログラミング(MILP)は最適化問題をモデル化するための基本的なツールである。
このアプローチの人気は高まっているが、同様のMILPインスタンスのディストリビューションを提供する共通のリポジトリがない。
ML誘導MILP法を進化させるための問題分散ライブラリであるDistributedal MIPLIBを紹介する。
論文 参考訳(メタデータ) (2024-06-11T05:25:38Z) - Active Learning with Fully Bayesian Neural Networks for Discontinuous and Nonstationary Data [0.0]
我々は,「小さなデータ」体制下でのアクティブな学習タスクに対して,完全ベイズニューラルネットワーク(FBNN)を導入する。
FBNNは信頼性の高い予測分布を提供し、アクティブな学習環境における不確実性の下で情報的意思決定に不可欠である。
そこで我々は,FBNNの「小型データ」システムにおけるアクティブな学習課題に対するNo-U-Turn Samplerを用いて,FBNNの適合性と性能を評価する。
論文 参考訳(メタデータ) (2024-05-16T05:20:47Z) - Robustness, Evaluation and Adaptation of Machine Learning Models in the
Wild [4.304803366354879]
本研究では、ドメインシフトに対するロバスト性の障害の原因と、ドメインロバストモデルをトレーニングするためのアルゴリズムを提案する。
モデル脆性の鍵となる原因はドメイン過度な適合であり、新しいトレーニングアルゴリズムはドメイン一般仮説を抑え、奨励する。
論文 参考訳(メタデータ) (2023-03-05T21:41:16Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
本稿では,ガウス混合に基づく複合バッチ正規化法を提案する。
機能空間をより包括的にモデル化し、ヘッドクラスの優位性を減らすことができる。
提案手法は,画像分類における既存の手法よりも優れている。
論文 参考訳(メタデータ) (2022-12-02T07:31:39Z) - Learning Globally Smooth Functions on Manifolds [94.22412028413102]
スムーズな関数の学習は、線形モデルやカーネルモデルなどの単純なケースを除いて、一般的に難しい。
本研究は,半無限制約学習と多様体正規化の技法を組み合わせることで,これらの障害を克服することを提案する。
軽度条件下では、この手法は解のリプシッツ定数を推定し、副生成物として大域的に滑らかな解を学ぶ。
論文 参考訳(メタデータ) (2022-10-01T15:45:35Z) - Learning High-Dimensional McKean-Vlasov Forward-Backward Stochastic
Differential Equations with General Distribution Dependence [6.253771639590562]
本稿では,MV-FBSDEを平均場相互作用の一般形式で計算するための新しいディープラーニング手法を提案する。
我々は、高次元MV-FBSDEを解くために、ディープニューラルネットワークを用いて標準BSDEと近似係数関数を解く。
論文 参考訳(メタデータ) (2022-04-25T18:59:33Z) - Improving Out-of-Distribution Robustness via Selective Augmentation [61.147630193060856]
機械学習アルゴリズムは、トレーニングとテスト例が同じ分布から引き出されると仮定する。
分散シフトは現実世界のアプリケーションでは一般的な問題であり、テスト時にモデルが劇的に悪化する可能性がある。
LISAと呼ばれる選択的な拡張によって不変関数を学習するミックスアップ方式を提案する。
論文 参考訳(メタデータ) (2022-01-02T05:58:33Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Causally-motivated Shortcut Removal Using Auxiliary Labels [63.686580185674195]
このようなリスク不変予測器の学習に重要な課題はショートカット学習である。
この課題に対処するために、フレキシブルで因果的なアプローチを提案する。
この因果的動機付けされた正規化スキームが堅牢な予測子を生み出すことを理論的および実証的に示す。
論文 参考訳(メタデータ) (2021-05-13T16:58:45Z) - Adaptive Risk Minimization: Learning to Adapt to Domain Shift [109.87561509436016]
ほとんどの機械学習アルゴリズムの基本的な前提は、トレーニングとテストデータは、同じ基礎となる分布から引き出されることである。
本研究では,学習データをドメインに構造化し,複数のテスト時間シフトが存在する場合の領域一般化の問題点について考察する。
本稿では、適応リスク最小化(ARM)の枠組みを紹介し、モデルがトレーニング領域に適応することを学ぶことで、効果的な適応のために直接最適化される。
論文 参考訳(メタデータ) (2020-07-06T17:59:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。