論文の概要: Can LLMs subtract numbers?
- arxiv url: http://arxiv.org/abs/2511.02795v1
- Date: Tue, 04 Nov 2025 18:20:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-05 18:47:06.143678
- Title: Can LLMs subtract numbers?
- Title(参考訳): LLMは減算できるのか?
- Authors: Mayank Jobanputra, Nils Philipp Walter, Maitrey Mehta, Blerta Veseli, Evan Parker Kelly Chapple, Yifan Wang, Sneha Chetani, Ellie Pavlick, Antonio Vergari, Vera Demberg,
- Abstract要約: 8種類の事前学習型大言語モデル (LLM) を加算および減算問題に基づいて評価した。
実験により、減算精度は加算の遅れを広いマージンで示している。
我々は,LLMの性能を向上できるかどうかを確認するため,小文字学習や命令チューニングなどの手法を試験する。
- 参考スコア(独自算出の注目度): 35.96520408823125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a systematic study of subtraction in large language models (LLMs). While prior benchmarks emphasize addition and multiplication, subtraction has received comparatively little attention despite being structurally distinct as a non-commutative operation. We evaluate eight pretrained LLMs spanning four families on addition and subtraction problems. Our experiments reveal that subtraction accuracy lags behind addition by a wide margin. We find that the errors for ($a-b$) are concentrated in cases where ($a<b$). In such cases, LLMs frequently produce the correct magnitude but omit the negative sign. Probing analyses show that LLMs internally encode whether results should be negative, yet this information is often not reflected in generated outputs. We further test well-known techniques such as few-shot learning and instruction-tuning to see if they can improve the LLMs' performance. Our results suggest that while few-shot prompting yields modest gains, the instruction-tuned models achieve near-perfect accuracies in generating the negative sign. Together, these findings provide a clearer characterization of the limitations and recoverability of LLMs' arithmetic capabilities in subtraction.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)におけるサブトラクションの体系的研究について述べる。
以前のベンチマークでは加算と乗算が重視されていたが、非可換演算として構造的に異なるにもかかわらず、サブトラクションはほとんど注目されなかった。
4家系にまたがる8つの事前訓練LDMを加算および減算問題で評価した。
実験の結果, 減算精度は, 加算の遅れが広範囲に及んでいることが明らかとなった。
a<b$)のエラーは、(a<b$)の場合に集中している。
そのような場合、LLMは正しい大きさをしばしば生成するが、負の符号を省略する。
仮説解析により、LSMは内部的に結果が負であるかどうかを符号化するが、この情報は生成された出力に反映されないことが多い。
さらに,LLMの性能を向上できるかどうかを確認するために,少数ショット学習や命令チューニングなど,よく知られた手法を試験する。
この結果から, 命令調整モデルでは, 負の符号を生成する際の精度がほぼ良好であることが示唆された。
これらの知見は,LLMの減算における算術能力の限界と回復性について,より明確な特徴を与えるものである。
関連論文リスト
- Large Language Model Hacking: Quantifying the Hidden Risks of Using LLMs for Text Annotation [66.84286617519258]
大規模言語モデルは、データアノテーションやテキスト分析といった労働集約的なタスクの自動化を可能にすることで、社会科学の研究を変革している。
このような変異は、系統的なバイアスやランダムなエラーを導入し、下流の分析に伝播し、タイプI(偽陽性)、タイプII(偽陰性)、タイプS(重み付け効果)、タイプM(誇張効果)のエラーを引き起こす。
意図的なLSMハッキングは驚くほど単純であることがわかった。21の社会科学研究から37のデータアノテーションタスクを複製することで、ほんのわずかのプロンプトの言い回しで、事実上何であれ統計的に重要なものとして表現できることがわかりました。
論文 参考訳(メタデータ) (2025-09-10T17:58:53Z) - LLM4VV: Evaluating Cutting-Edge LLMs for Generation and Evaluation of Directive-Based Parallel Programming Model Compiler Tests [7.6818904666624395]
本稿では,コンパイラテストの生成にLLMを用いたデュアルLLMシステムと実験について述べる。
LLMは、品質の高いコンパイラテストを生成し、それらを自動的に検証する有望な可能性を持っていることは明らかである。
論文 参考訳(メタデータ) (2025-07-29T02:34:28Z) - Language Models are Symbolic Learners in Arithmetic [8.34588487873447]
大規模言語モデル(LLM)は、言語モデリングと数値計算の間に固有の違いがあるため、算術学習に苦慮していると考えられている。
まず,算術学習において LLM が部分積を利用するかどうかを検討する。
LLMは学習後にいくつかの部分積を識別できるが、算術的なタスクには利用できない。
論文 参考訳(メタデータ) (2024-10-21T01:57:16Z) - Not All LLM Reasoners Are Created Equal [58.236453890457476]
小学校数学におけるLLMの解答能力の深さについて検討する。
既存の数式語問題に対して,それらの性能を併用して評価する。
論文 参考訳(メタデータ) (2024-10-02T17:01:10Z) - The Good, The Bad, and The Greedy: Evaluation of LLMs Should Not Ignore Non-Determinism [39.392450788666814]
大規模言語モデル(LLM)の現在の評価は、しばしば非決定論を見落としている。
greedyデコーディングは一般的に、最も評価されたタスクのサンプリング方法よりも優れています。
より小型のLPMはGPT-4-Turboのような大型のモデルと一致するか、超えることができる。
論文 参考訳(メタデータ) (2024-07-15T06:12:17Z) - Detecting Hallucinations in Large Language Model Generation: A Token Probability Approach [0.0]
LLM(Large Language Models)は、幻覚と呼ばれる不正確な出力を生成する。
本稿では,トークンから得られる4つの数値的特徴と,他の評価者から得られる語彙的確率を用いた教師付き学習手法を提案する。
この方法は有望な結果をもたらし、3つの異なるベンチマークで複数のタスクで最先端の結果を上回る。
論文 参考訳(メタデータ) (2024-05-30T03:00:47Z) - An Empirical Study of Catastrophic Forgetting in Large Language Models During Continual Fine-tuning [70.48605869773814]
カタストロフィック・ナッシング(英: Catastrophic forgetting、CF)は、機械学習において、モデルが以前に学習した情報を忘れたときに発生する現象である。
本研究では,大規模言語モデルにおける連続的調律時の忘れ現象を実験的に評価する。
論文 参考訳(メタデータ) (2023-08-17T02:53:23Z) - SelfCheck: Using LLMs to Zero-Shot Check Their Own Step-by-Step
Reasoning [55.76083560152823]
SelfCheckは、ステップバイステップの推論でエラーを認識する汎用的なゼロショット検証スキーマである。
我々は,3つのデータセット(GSM8K,MathQA,MATH)上でSelfCheckをテストし,エラーの認識に成功し,最終的な回答精度が向上することを確認した。
論文 参考訳(メタデータ) (2023-08-01T10:31:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。