論文の概要: Learning with less: label-efficient land cover classification at very high spatial resolution using self-supervised deep learning
- arxiv url: http://arxiv.org/abs/2511.03004v1
- Date: Tue, 04 Nov 2025 21:17:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-06 18:19:32.249279
- Title: Learning with less: label-efficient land cover classification at very high spatial resolution using self-supervised deep learning
- Title(参考訳): 自己教師型深層学習を用いた高度空間分解能におけるラベル効率の低い土地被覆分類の学習
- Authors: Dakota Hester, Vitor S. Martins, Lucas B. Ferreira, Thainara M. A. Lima,
- Abstract要約: 自己教師型ディープラーニングは、手動で注釈付けされた大量のデータの必要性を減らすための効果的な戦略である。
これらの結果から,自己指導型学習は,手動で注釈付けした大量のデータの必要性を減らすための効果的な戦略であることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning semantic segmentation methods have shown promising performance for very high 1-m resolution land cover classification, but the challenge of collecting large volumes of representative training data creates a significant barrier to widespread adoption of such models for meter-scale land cover mapping over large areas. In this study, we present a novel label-efficient approach for statewide 1-m land cover classification using only 1,000 annotated reference image patches with self-supervised deep learning. We use the "Bootstrap Your Own Latent" pre-training strategy with a large amount of unlabeled color-infrared aerial images (377,921 256x256 1-m pixel patches) to pre-train a ResNet-101 convolutional encoder. The learned encoder weights were subsequently transferred into multiple deep semantic segmentation architectures (FCN, U-Net, Attention U-Net, DeepLabV3+, UPerNet, PAN), which were then fine-tuned using very small training dataset sizes with cross-validation (250, 500, 750 patches). Among the fine-tuned models, we obtained the 87.14% overall accuracy and 75.58% macro F1 score using an ensemble of the best performing U-Net models for comprehensive 1-m, 8-class land cover mapping, covering more than 123 billion pixels over the state of Mississippi, USA. Detailed qualitative and quantitative analysis revealed accurate mapping of open water and forested areas, while highlighting challenges in accurate delineation between cropland, herbaceous, and barren land cover types. These results show that self-supervised learning is an effective strategy for reducing the need for large volumes of manually annotated data, directly addressing a major limitation to high spatial resolution land cover mapping at scale.
- Abstract(参考訳): 深層学習セマンティックセグメンテーション手法は, 高度1mの土地被覆分類において有望な性能を示したが, 大量の代表的な訓練データを収集することの難しさは, 大規模な土地被覆マッピングにそのようなモデルを広く採用する上で大きな障壁となっている。
本研究では,1000個の注釈付き参照画像パッチと自己教師付き深層学習を用いて,州全体で1mの土地被覆分類を行う新しいラベル効率のアプローチを提案する。
我々は、ResNet-101畳み込みエンコーダを事前訓練するために、大量のカラー赤外線画像(377,921 256x256 1-m ピクセルパッチ)をラベル付けした「Bootstrap Your Own Latent」事前学習戦略を使用する。
学習したエンコーダの重みはその後、複数のディープセマンティックセグメンテーションアーキテクチャ(FCN、U-Net、アテンションU-Net、DeepLabV3+、UPerNet、PAN)に変換され、非常に小さなトレーニングデータセットサイズ(250,500,750パッチ)で微調整された。
細調整されたモデルのうち87.14%の精度と75.58%のマクロF1スコアを得た。
詳細な質的および定量的分析により、開水と森林地帯の正確なマッピングが明らかとなり、農地、草原および不毛の土地被覆タイプ間の正確なデライン化の課題が浮き彫りになった。
これらの結果から,自己教師あり学習は大量の手動注釈データの必要性を軽減し,大規模な空間分解能ランドカバーマッピングへの大きな限界に対処するための効果的な戦略であることが示唆された。
関連論文リスト
- LC-SLab -- An Object-based Deep Learning Framework for Large-scale Land Cover Classification from Satellite Imagery and Sparse In-situ Labels [25.42215602005236]
本研究では,大規模土地被覆分類のためのオブジェクトベース深層学習手法をスパース監督下で探索するLC-SLabを提案する。
LC-SLabは、グラフニューラルネットワークによる入力レベルアグリゲーションと、後処理の結果による出力レベルアグリゲーションの両方をサポートする。
その結果、オブジェクトベースの手法は、よりコヒーレントなマップを生成しながら、一般的なピクセル単位のモデルの精度を一致または超えることができることがわかった。
論文 参考訳(メタデータ) (2025-09-19T11:08:24Z) - Evaluation of Deep Learning Semantic Segmentation for Land Cover Mapping on Multispectral, Hyperspectral and High Spatial Aerial Imagery [0.0]
気候変動の台頭で、土地被覆マッピングは環境モニタリングにおいて緊急に必要となってきた。
本研究では,Unet,Linknet,FPN,PSPnetなどのセマンティックセグメンテーション手法を用いて植生や水などの分類を行った。
LinkNetモデルは、すべてのデータセットで0.92の精度でIoUで取得した。
論文 参考訳(メタデータ) (2024-06-20T11:40:12Z) - Recognize Any Regions [55.76437190434433]
RegionSpotは、ローカライゼーション基盤モデルから位置認識ローカライゼーション知識と、ViLモデルからのセマンティック情報を統合する。
オープンワールドオブジェクト認識の実験では、私たちのRereaSpotは、以前の代替よりも大きなパフォーマンス向上を実現しています。
論文 参考訳(メタデータ) (2023-11-02T16:31:49Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
本研究では,衛星画像の高可用性を活用するための自己監督型コントラスト事前学習法として,エンベディングアースを提案する。
提案手法による事前学習では, 25%の絶対mIoUが得られた。
学習した特徴は、異なる領域間で一般化され、提案した事前学習スキームの可能性を開放する。
論文 参考訳(メタデータ) (2022-03-11T16:14:14Z) - Grasp-Oriented Fine-grained Cloth Segmentation without Real Supervision [66.56535902642085]
本稿では, 深度画像のみを用いて, 変形した衣服のきめ細かい領域検出の問題に取り組む。
最大で6つの意味領域を定義し, 首の縁, スリーブカフ, ヘム, 上と下をつかむ点を含む。
これらの部品のセグメント化とラベル付けを行うために,U-net ベースのネットワークを導入する。
合成データのみを用いてネットワークをトレーニングし、提案したDAが実データでトレーニングしたモデルと競合する結果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-06T16:31:20Z) - Semi-Supervised Semantic Segmentation in Earth Observation: The
MiniFrance Suite, Dataset Analysis and Multi-task Network Study [82.02173199363571]
我々は,地球観測における半教師付きセマンティックセマンティックセグメンテーションのための新しい大規模データセット,MiniFranceスイートを紹介した。
MiniFranceにはいくつかの前例のない特性があり、2000以上の超高解像度の空中画像を含み、200億枚以上のサンプル(ピクセル)を処理している。
外観の類似性やMiniFranceデータの徹底的な研究からデータ代表性分析のためのツールを提案し,半教師付き環境での学習や一般化に適していることを示す。
論文 参考訳(メタデータ) (2020-10-15T15:36:58Z) - Land Cover Semantic Segmentation Using ResUNet [0.0]
本稿では,土地被覆分類のための自動システムの開発について述べる。
本システムは、入力として領域のマルチバンド衛星画像を取得し、入力と同じ解像度で領域のランドカバーマップを出力する。
この目的のために、衛星画像の土地被覆セマンティックセグメンテーションを予測するために、畳み込み機械学習モデルを訓練した。
論文 参考訳(メタデータ) (2020-10-13T10:56:09Z) - Big Self-Supervised Models are Strong Semi-Supervised Learners [116.00752519907725]
ImageNet上での半教師あり学習に驚くほど効果的であることを示す。
我々のアプローチの重要な要素は、事前訓練と微調整において大きな(深度と広度)ネットワークを使用することである。
ラベルが少なくなればなるほど、より大きなネットワークから、このアプローチ(ラベル付きデータのタスクに依存しない使用)が恩恵を受けることが分かっています。
論文 参考訳(メタデータ) (2020-06-17T17:48:22Z) - Very High Resolution Land Cover Mapping of Urban Areas at Global Scale
with Convolutional Neural Networks [0.0]
本稿では,高解像度画像と限られたノイズラベル付きデータから,都市域の7クラス土地被覆マップを作成する手法について述べる。
データベースの集約、セミオートマチックな分類、手動のアノテーションといったいくつかの分野に関するトレーニングデータセットを作成して、各クラスで完全な基礎的真実を得ました。
最終生成物は、ベクトル化の前に縫合され、二項化され、精製されたモデル予測から計算された非常に貴重な土地被覆写像である。
論文 参考訳(メタデータ) (2020-05-12T10:03:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。